

Class XII Session 2024-25
Subject - Mathematics
Sample Question Paper - 6

Time Allowed: 3 hours

Maximum Marks: 80

General Instructions:

1. This Question paper contains - five sections A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.
2. Section A has 18 MCQ's and 02 Assertion-Reason based questions of 1 mark each.
3. Section B has 5 Very Short Answer (VSA)-type questions of 2 marks each.
4. Section C has 6 Short Answer (SA)-type questions of 3 marks each.
5. Section D has 4 Long Answer (LA)-type questions of 5 marks each.
6. Section E has 3 source based/case based/passage based/integrated units of assessment (4 marks each) with sub parts.

Section A

1. If $A = [a_{ij}]$ is a square matrix of order 2 such that $a_{ij} = \begin{cases} 1, & \text{when } i \neq j \\ 0, & \text{when } i = j \end{cases}$ then A^2 is [1]
 a) $\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$ b) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
 c) $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ d) $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
2. Three points $P(2x, x + 3)$, $Q(0, x)$ and $R(x + 3, x + 6)$ are collinear, then x is equal to: [1]
 a) 2 b) 0
 c) 3 d) 1
3. If $A \cdot (\text{adj } A) = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$, then the value of $|A| + |\text{adj } A|$ is equal to: [1]
 a) 12 b) 3
 c) 27 d) 9
4. If A is a non singular matrix and A' denotes the transpose of A , then [1]
 a) $|AA'| \neq |A^2|$ b) $|A| - |A'| \neq 0$
 c) $|A| + |A'| \neq 0$ d) $|A| \neq |A'|$
5. If (a_1, b_1, c_1) and (a_2, b_2, c_2) be the direction ratios of two parallel lines then [1]
 a) $a_1^2 + b_1^2 + c_1^2 = a_2^2 + b_2^2 + c_2^2$ b) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$
 c) $a_1 = a_2, b_1 = b_2, c_1 = c_2$ d) $a_1a_2 + b_1b_2 + c_1c_2 = 0$

6. The general solution of the differential equation $\frac{dy}{dx} = \frac{y}{x}$ is [1]
 a) $y = kx$ b) $\log y - kx$
 c) $\cos x$ d) $\tan x$

7. The corner points of the feasible region for a Linear Programming problem are P(0, 5), Q(1, 5), R(4, 2) and S(12, 0). The minimum value of the objective function $Z = 2x + 5y$ is at the point. [1]
 a) Q b) S
 c) R d) P

8. In $\triangle ABC$, $\overrightarrow{AB} = \hat{i} + \hat{j} + 2\hat{k}$ and $\overrightarrow{AC} = 3\hat{i} - \hat{j} + 4\hat{k}$. If D is mid-point of BC, then vector \overrightarrow{AD} is equal to: [1]
 a) $\hat{i} - \hat{j} + \hat{k}$ b) $2\hat{i} - 2\hat{j} + 2\hat{k}$
 c) $4\hat{i} + 6\hat{k}$ d) $2\hat{i} + 3\hat{k}$

9. $\int e^{5 \log x} dx$ is equal to: [1]
 a) $\frac{x^5}{5} + C$ b) $6x^5 + C$
 c) $\frac{x^6}{6} + C$ d) $5x^4 + C$

10. If $A = \begin{bmatrix} 5 & x \\ y & 0 \end{bmatrix}$ and $A = A^T$, where A^T is the transpose of the matrix A, then [1]
 a) $x = 0, y = 5$ b) $x = 5, y = 0$
 c) $x = y$ d) $x + y = 5$

11. Which of the following statements is correct? [1]
 a. Every LPP admits an optimal selection.
 b. A LPP admits unique optimal solution.
 c. If a LPP admits two optimal solutions it has an infinite solution.
 d. The set of all feasible solutions of a LPP is not a convex set.
 a) Option (d) b) Option (a)
 c) Option (b) d) Option (c)

12. If the projection of $\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}$ on $\vec{b} = 2\hat{i} + \lambda\hat{k}$ is zero, then the value of λ is: [1]
 a) 0 b) 1
 c) $\frac{-3}{2}$ d) $\frac{-2}{3}$

13. $\text{Adj.}(KA) = \underline{\hspace{2cm}}$ [1]
 a) $K^{n-1} \text{Adj. } A$ b) $K^{n+1} \text{Adj. } A$
 c) $K \text{Adj. } A$ d) $K^n \text{Adj. } A$

14. X and Y are independent events such that $P(X \cap \bar{Y}) = \frac{2}{5}$ and $P(X) = \frac{3}{5}$. Then $P(Y)$ is equal to: [1]
 a) $\frac{2}{3}$ b) $\frac{1}{3}$
 c) $\frac{1}{5}$ d) $\frac{2}{5}$

15. The general solution of a differential equation of the type $\frac{dx}{dy} + P_1x = Q_1$ is [1]
 a) $xe^{\int P_1 dy} = \int \left(Q_1 e^{\int P_1 dy} \right) dy + C$ b) $ye^{\int P_1 dy} = \int \left(Q_1 e^{\int P_1 dy} \right) dy + C$

$$\text{c) } y \cdot e^{\int_P dx} = \int \left(Q_1 e^{\int P_1 dx} \right) dx + C \quad \text{d) } xe^{\int P^1 dx} = \int \left(Q_1 e^{\int P_1 dx} \right) dx + C$$

16. If $|\vec{a}| = 4$ and $-3 \leq \lambda \leq 2$, then the range of $|\lambda\vec{a}|$ is **[1]**

17. If $x = a \sec \theta$, $y = b \tan \theta$ then $\frac{dy}{dx} = ?$ [1]

a) $\frac{b}{a} \sec \theta$ b) $\frac{b}{a} \tan \theta$
c) $\frac{b}{a} \operatorname{cosec} \theta$ d) $\frac{b}{a} \cot \theta$

18. If the lines $\frac{x-1}{-3} = \frac{y-2}{2k} = \frac{z-3}{2}$ and $\frac{x-1}{3k} = \frac{y-1}{1} = \frac{z-6}{-5}$ are perpendicular to each other then $k = ?$ [1]

a) $\frac{-10}{7}$ b) $\frac{5}{7}$
c) $\frac{-5}{7}$ d) $\frac{10}{7}$

19. **Assertion (A):** If two positive numbers are such that sum is 16 and sum of their cubes is minimum, then [1]
numbers are 8, 8.

Reason (R): If f be a function defined on an interval I and $c \in I$ and let f be twice differentiable at c , then $x = c$ is a point of local minima if $f'(c) = 0$ and $f''(c) > 0$ and $f(c)$ is local minimum value of f .

- a) Both A and R are true and R is the correct explanation of A.
- b) Both A and R are true but R is not the correct explanation of A.
- c) A is true but R is false.
- d) A is false but R is true.

20. **Assertion (A):** Let $A = \{2, 4, 6\}$ and $B = \{3, 5, 7, 9\}$ and defined a function $f = \{(2, 3), (4, 5), (6, 7)\}$ from A to B . Then, f is not onto. [1]

Reason (R): A function $f : A \rightarrow B$ is said to be onto, if every element of B is the image of some elements of A under f .

- a) Both A and R are true and R is the correct explanation of A.
- b) Both A and R are true but R is not the correct explanation of A.
- c) A is true but R is false.
- d) A is false but R is true.

Section B

21. Write the value of $\sin^{-1}\left(\frac{1}{3}\right) - \cos^{-1}\left(-\frac{1}{3}\right)$ [2]

OR

Find the value of $\sin \left[2\cot^{-1} \left(\frac{-5}{12} \right) \right]$

22. A man is walking at the rate of 6.5 km/hr towards the foot of a tower 120 m high. At what rate is he approaching the top of the tower when he is 50 m away from the tower [2]

23. Find the intervals in which the function f given by $f(x) = 2x^3 - 3x^2 - 36x + 7$ is decreasing. [2]

OR

The volume of a sphere is increasing at the rate of $8 \text{ cm}^3/\text{s}$. Find the rate at which its surface area is increasing when the radius of the sphere is 12 cm.

24. Prove that: $\int_0^{\pi/2} \frac{dx}{(1+\sqrt{\tan x})} = \frac{\pi}{4}$ [2]

25. Show that $f(x) = (x - 1) e^x + 1$ is an increasing function for all $x > 0$. [2]

Section C

26. Evaluate $\int \frac{\sin(x-a)}{\sin(x+a)} dx$. [3]

27. A problem in mathematics is given to three students whose chances of solving it correctly are $1/2$, $1/3$ and $1/4$ respectively. What is the probability that only one of them solves it correctly? [3]

28. Evaluate $\int_{-\pi}^{\pi} (\cos ax - \sin bx)^2 dx$. [3]

OR

Evaluate the integral: $\int \frac{1}{x\sqrt{1+x^2}} dx$ [3]

29. $(x^2 + y^2) dy = xy dx$. If $y(1) = 1$ and $y(x_0) = e$, then find the value of x_0 . [3]

OR

Find a particular solution of the differential equation $\frac{dy}{dx} + 2y \tan x = \sin x$, given that $y = 0$, when $x = \frac{\pi}{3}$. [3]

30. Solve the following LPP graphically: [3]

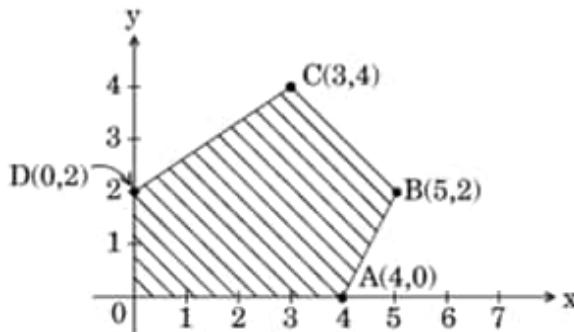
Minimise $Z = 5x + 10y$

subject to the constraints $x + 2y \geq 120$

$x + y \geq 60$, $x - 2y \geq 0$ and $x, y \geq 0$

OR

The corner points of the feasible region determined by the system of linear inequations are as shown below:



Answer each of the following:

i. Let $z = 13x - 15y$ be the objective function. Find the maximum and minimum values of z and also the corresponding points at which the maximum and minimum values occur.

ii. Let $z = kx + y$ be the objective function. Find k , if the value of z at A is same as the value of z at B .

31. If $e^x + e^y = e^x + y$, prove that $\frac{dy}{dx} + e^{y-x} = 0$. [3]

Section D

32. Using method of integration find the area of the triangle ABC, co-ordinates of whose vertices are A (2, 0), B (4, 5) and C (6, 3). [5]

33. Let R be relation defined on the set of natural number N as follows: [5]

$R = \{(x, y) : x \in N, y \in N, 2x + y = 41\}$. Find the domain and range of the relation R. Also verify whether R is reflexive, symmetric and transitive.

OR

Show that the function $f: R_0 \rightarrow R_0$, defined as $f(x) = \frac{1}{x}$, is one-one onto, where R_0 is the set non-zero real numbers.

Is the result true, if the domain R_0 is replaced by N with co-domain being same as R_0 ?

34. Given $A = \begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1 \end{bmatrix}$ find AB and use this result in solving the following system of equations. [5]

$$x - y + z = 4$$

$$x - 2y - 2z = 9$$

$$2x + y + 3z = 1$$

35. Find the shortest distance between the given lines. $\vec{r} = (\hat{i} + 2\hat{j} - 4\hat{k}) + \lambda(2\hat{i} + 3\hat{j} + 6\hat{k})$, $\vec{r} = (3\hat{i} + 3\hat{j} - 5\hat{k}) + \mu(-2\hat{i} + 3\hat{j} + 8\hat{k})$ [5]

OR

Find the perpendicular distance of the point $(1, 0, 0)$ from the line $\frac{x-1}{2} = \frac{y+1}{-3} = \frac{z+10}{8}$. Also, find the coordinates of the foot of the perpendicular and the equation of the perpendicular.

Section E

36. **Read the following text carefully and answer the questions that follow:** [4]

For an audition of a reality singing competition, interested candidates were asked to apply under one of the two musical genres-folk or classical and under one of the two age categories-below 18 or 18 and above.

The following information is known about the 2000 application received:

- 960 of the total applications were the folk genre.
- 192 of the folk applications were for the below 18 category.
- 104 of the classical applications were for the 18 and above category.

Questions:

- What is the probability that an application selected at random is for the 18 and above category provided it is under the classical genre? Show your work. (1)
- An application selected at random is found to be under the below 18 category. Find the probability that it is under the folk genre. Show your work. (1)
- If $P(A) = 0.4$, $P(B) = 0.8$ and $P(B|A) = 0.6$, then $P(A \cup B)$ is equal to. (2)

OR

- If A and B are two independent events with $P(A) = \frac{3}{5}$ and $P(B) = \frac{4}{9}$, then find $P(A' \cap B')$. (2)

37. **Read the following text carefully and answer the questions that follow:** [4]

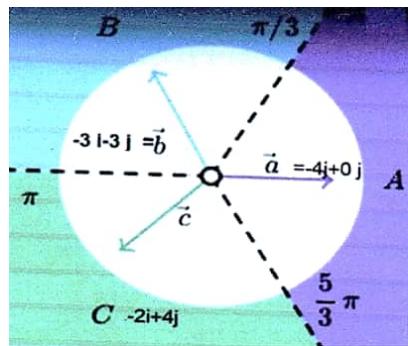
Three friends Ganesh, Dinesh and Ramesh went for playing a Tug of war game. Team A, B, and C belong to Ganesh, Dinesh and Ramesh respectively.

Teams A, B, C have attached a rope to a metal ring and is trying to pull the ring into their own area (team areas shown below).

Team A pulls with $F_1 = 4\hat{i} + 0\hat{j}$ KN

Team B $\rightarrow F_2 = -2\hat{i} + 4\hat{j}$ KN

Team C $\rightarrow F_3 = -3\hat{i} - 3\hat{j}$ KN



- Which team will win the game? (1)
- What is the magnitude of the teams combine Force? (1)
- What is the magnitude of the force of Team B? (2)

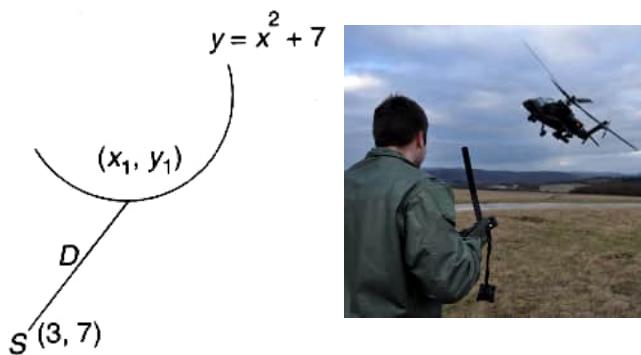
OR

How many KN Force is applied by Team A? (2)

38. **Read the following text carefully and answer the questions that follow:**

[4]

An Apache helicopter of the enemy is flying along the curve given by $y = x^2 + 7$. A soldier, placed at $(3, 7)$ want to shoot down the helicopter when it is nearest to him.



- i. If $P(x_1, y_1)$ be the position of a helicopter on curve $y = x^2 + 7$, then find distance D from P to soldier place at $(3, 7)$. (1)
- ii. Find the critical point such that distance is minimum. (1)
- iii. Verify by second derivative test that distance is minimum at $(1, 8)$. (2)

OR

Find the minimum distance between soldier and helicopter? (2)

Solution

Section A

1.

(b)
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Explanation:
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

2.

(d) 1

Explanation: As points are collinear

\Rightarrow Area of triangle formed by 3 points is zero.

$$\Rightarrow \frac{1}{2} \begin{vmatrix} (x_1 - x_2) & (x_2 - x_3) \\ (y_1 - y_2) & (y_2 - y_3) \end{vmatrix} = 0$$

$$\Rightarrow \frac{1}{2} \begin{vmatrix} (2x - 0) & \{0 - (x + 3)\} \\ (x + 3 - x) & \{x - (x + 6)\} \end{vmatrix} = 0$$

$$\Rightarrow \begin{vmatrix} 2x & -(x + 3) \\ 3 & -6 \end{vmatrix} = 0$$

$$\Rightarrow -12x + 3(x + 3) = 0$$

$$\Rightarrow -12x + 3x + 9 = 0$$

$$\Rightarrow -9x = -9$$

$$\Rightarrow x = 1$$

3. **(a)** 12

Explanation: 12

Explanation:

$$A \cdot (\text{adj } A) = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

we know that $A \cdot (\text{adj } A) = I \cdot |A|$

$$\Rightarrow \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix} = |A| I$$

$$\Rightarrow 3 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = |A| I$$

$$\Rightarrow 3I = |A| I$$

$$\Rightarrow |A| = 3 \text{ ---(1)}$$

$$|\text{adj } A| = |A|^{3-1} \text{ [Since order } n=3]$$

$$|\text{adj } A| = (3)^2 = 9$$

$$|\text{adj}(A)| = 9 \text{ -----(2)}$$

Now,

$$|A| + |\text{adj } A| = 3 + 9 = 12$$

4.

(c) $|A| + |A'| \neq 0$

Explanation: Because, the determinant of a matrix and its transpose are always equal that is $|A| = |A'|$

5.

(b)
$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

Explanation: We know that if there are two parallel lines then their direction ratios must have a relation

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

6. (a) $y = kx$

Explanation: We have,

$$\frac{dy}{dx} = \frac{y}{x}$$

$$\Rightarrow \frac{dy}{y} = \frac{dx}{x}$$

Integrating on both sides,

$$\int \frac{dy}{y} = \int \frac{dx}{x}$$

$$\log |y| = \log |x| + \log k$$

$$\Rightarrow \log \left(\frac{y}{x}\right) = \log k$$

$$\Rightarrow y = kx$$

7.

(c) R

Explanation:

Corner points	Value of Z = 2x + 5y
P(0, 5)	Z = 2(0) + 5(5) = 25
Q(1, 5)	Z = 2(1) + 5(5) = 27
R(4, 2)	Z = 2(4) + 5(2) = 18 → Minimum
S(12, 0)	Z = 2(12) + 5(0) = 24

Thus, minimum value of Z occurs at R(4, 2)

8.

(d) $2\hat{i} + 3\hat{k}$

Explanation: $2\hat{i} + 3\hat{k}$

9.

(c) $\frac{x^6}{6} + C$

Explanation: $\frac{x^6}{6} + C$

10.

(c) $x = y$

Explanation: $A = A^T$

$$\begin{bmatrix} 5 & x \\ y & 0 \end{bmatrix} = \begin{bmatrix} 5 & y \\ x & 0 \end{bmatrix}$$

$$x = y$$

11.

(d) Option (c)

Explanation: If a LPP admits two optimal solutions it has an infinite solution.

12.

(d) $\frac{-2}{3}$

Explanation: $\frac{\vec{a} \cdot \vec{b}}{|b|} = 0$

$$\vec{a} \cdot \vec{b} = 0$$

$$(\hat{i} - 2\hat{j} + 3\hat{k}) \cdot (2\hat{i} + \lambda\hat{k}) = 0$$

$$2 \times 1 + 3\lambda = 0$$

$$2 + 3\lambda = 0$$

$$3\lambda = -2$$

$$\lambda = \frac{-2}{3}$$

13. (a) $K^{n-1} \text{Adj. } A$

Explanation: $\text{Adj. } (KA) = K^{n-1} \text{Adj. } A$, where K is a scalar and A is a $n \times n$ matrix.

14.

(b) $\frac{1}{3}$

Explanation: $\frac{1}{3}$

15. (a) $xe^{\int P_1 dy} = \int (Q_1 e^{\int P_1 dy}) dy + C$

Explanation: The integrating factor of the given differential equation

$$\frac{dx}{dy} + P_1 x = Q_1 \text{ is } e^{\int P_1 dy}$$

Thus, the general solution of the differential equation is given by,

$$x(I.F.) = \int (Q_1 \times I.F.) dy + C$$

$$\Rightarrow x \cdot e^{\int P_1 dy} = \int (Q_1 e^{\int P_1 dy}) dy + C$$

16. (a) [0, 12]

Explanation: Given that, $|\vec{a}| = 4$ and $-3 \leq \lambda \leq 2$

$$\text{We know that, } |\lambda \vec{a}| = |\lambda| |\vec{a}|$$

$$\Rightarrow |\lambda \vec{a}| = |-3| |\vec{a}| = 3.4 = 12 \text{ at } \lambda = -3$$

$$\Rightarrow |\lambda \vec{a}| = |0| |\vec{a}| = 0.4 = 0 \text{ at } \lambda = 0$$

$$\Rightarrow |\lambda \vec{a}| = |2| |\vec{a}| = 2.4 = 8 \text{ at } \lambda = 2$$

Hence, the range of $|\lambda \vec{a}|$ is [0, 12].

17.

(c) $\frac{b}{a} \cosec \theta$

Explanation: $x = a \sec \theta$, we get

$$\therefore \frac{dx}{d\theta} = a \sec \theta \cdot \tan \theta$$

$$\therefore \frac{d\theta}{dx} = \frac{1}{a \sec \theta \cdot \tan \theta}$$

$y = b \tan \theta$, we get

$$\therefore \frac{dy}{d\theta} = b \cdot \sec^2 \theta$$

$$\Rightarrow \frac{dy}{dx} = \frac{dy}{d\theta} \times \frac{d\theta}{dx}$$

$$\Rightarrow \frac{dy}{dx} = b \cdot \sec^2 \theta \times \frac{1}{a \sec \theta \cdot \tan \theta}$$

$$\Rightarrow \frac{dy}{dx} = \frac{b \sec \theta}{a \tan \theta}$$

$$\Rightarrow \frac{dy}{dx} = \frac{b \cdot \frac{1}{\cos \theta}}{a \cdot \frac{\sin \theta}{\cos \theta}}$$

$$\Rightarrow \frac{dy}{dx} = \frac{b}{a} \cosec \theta$$

18. (a) $\frac{-10}{7}$

Explanation: If the lines are perpendicular to each other then the angle between these lines will be $\frac{\pi}{2}$, then the cosine will be 0

$$\vec{a} = -3\hat{i} + 2k\hat{j} + 2\hat{k}$$

$$\Rightarrow |\vec{a}| = \sqrt{3^2 + (2k)^2 + 2^2}$$

$$= \sqrt{13 + 4k^2}$$

$$\vec{b} = 3k\hat{i} + \hat{j} - 5\hat{k}$$

$$\Rightarrow |\vec{b}| = \sqrt{(3k)^2 + 1 + 5^2}$$

$$= \sqrt{9k^2 + 26}$$

$$\cos\left(\frac{\pi}{2}\right) = \frac{(3k\hat{i} + \hat{j} - 5\hat{k}) \cdot (-3\hat{i} + 2k\hat{j} + 2\hat{k})}{\sqrt{13 + 4k^2} \times \sqrt{9k^2 + 26}}$$

$$0 = \frac{-9k + 2k - 10}{\sqrt{13 + 4k^2} \times \sqrt{9k^2 + 26}}$$

$$\Rightarrow k = -\frac{10}{7}$$

19. (a) Both A and R are true and R is the correct explanation of A.

Explanation: Let one number be x, then the other number will be $(16 - x)$.

Let the sum of the cubes of these numbers be denoted by S.

Then, $S = x^3 + (16 - x)^3$

On differentiating w.r.t. x, we get

$$\begin{aligned}
 \frac{dS}{dx} &= 3x^2 + 3(16 - x)^2(-1) \\
 &= 3x^2 - 3(16 - x)^2 \\
 \Rightarrow \frac{d^2S}{dx^2} &= 6x + 6(16 - x) = 96
 \end{aligned}$$

For minima put $\frac{dS}{dx} = 0$.

$$\therefore 3x^2 - 3(16 - x)^2 = 0$$

$$\Rightarrow x^2 - (256 + x^2 - 32x) = 0$$

$$\Rightarrow 32x = 256$$

$$\Rightarrow x = 8$$

$$\text{At } x = 8, \left(\frac{d^2S}{dx^2} \right)_{x=8} = 96 > 0$$

By second derivative test, $x = 8$ is the point of local minima of S .

Thus, the sum of the cubes of the numbers is the minimum when the numbers are 8 and $16 - 8 = 8$

Hence, the required numbers are 8 and 8.

20. (a) Both A and R are true and R is the correct explanation of A.

Explanation: Assertion: Given that,

$$A = \{2, 4, 6\},$$

$$R = \{3, 5, 7, 9\}$$

$$\text{and } R = \{(2,3), (4, 5), (6, 7)\}$$

$$\text{Here, } f(2) = 3, f(4) = 5 \text{ and } f(6) = 7$$

It can be seen that the images of distinct elements of A under f are distinct.

Hence, function f is one-one but f is not onto as $9 \in B$ does not have a pre-image in A.

Hence, both Assertion and Reason are true, but Reason is not a correct explanation of Assertion.

Section B

21. Given $\sin^{-1}\left(\frac{1}{3}\right) - \cos^{-1}\left(-\frac{1}{3}\right)$

We know that $\cos^{-1}(-\theta) = \pi - \cos^{-1}\theta$

$$\begin{aligned}
 &= \sin^{-1}\left(\frac{1}{3}\right) - \left[\pi - \cos^{-1}\left(\frac{1}{3}\right)\right] \\
 &= \sin^{-1}\left(\frac{1}{3}\right) - \pi + \cos^{-1}\left(\frac{1}{3}\right) \\
 &= \sin^{-1}\left(\frac{1}{3}\right) + \cos^{-1}\left(\frac{1}{3}\right) - \pi \\
 &= \frac{\pi}{2} - \pi \\
 &= -\frac{\pi}{2}
 \end{aligned}$$

Therefore we have,

$$\sin^{-1}\left(\frac{1}{3}\right) - \cos^{-1}\left(-\frac{1}{3}\right) = -\frac{\pi}{2}$$

OR

$$\text{Let } \cot^{-1}\left(\frac{-5}{12}\right) = y$$

$$\text{Then } \cot y = \frac{-5}{12}$$

Now,

$$\begin{aligned}
 \sin\left[2\cot^{-1}\left(\frac{-5}{12}\right)\right] &= \sin 2y \\
 &= 2\sin y \cos y = 2\left(\frac{12}{13}\right)\left(\frac{-5}{13}\right) \quad [\text{since } \cot y < 0, \text{ so } y \in (\frac{\pi}{2}, \pi)] \\
 &= \frac{-120}{169}
 \end{aligned}$$

22. Let at any time t , the man be at distances x and y metres from the foot and top of the tower respectively. Then,

$$y^2 = x^2 + (120)^2 \dots (i)$$

$$\Rightarrow 2y \frac{dy}{dt} = 2x \frac{dx}{dt}$$

$$\Rightarrow \frac{dy}{dt} = \frac{x}{y} \frac{dx}{dt}$$

given: $\frac{dx}{dt} = -6 \cdot 5 \text{ km/hr}$ negative sign due to decreasing,

therefore;

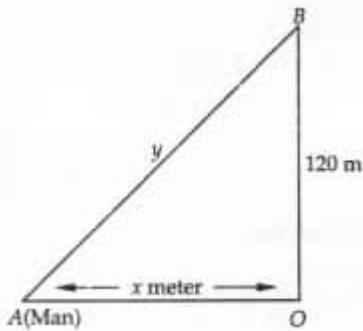
$$\frac{dy}{dt} = -\frac{6 \cdot 5x}{y} \dots (ii)$$

Putting $x = 50$ in (i) we get $y = \sqrt{50^2 + 120^2} = 130$

Putting $x = 50$, $y = 130$ in (ii), we get

$$\frac{dy}{dt} = -\frac{6.5 \times 50}{130} = -2 \cdot 5$$

Thus, the man is approaching the top of the tower at the rate of 2.5 km/hr.



23. It is given that function $f(x) = 2x^3 - 3x^2 - 36x + 7$

$$\Rightarrow f'(x) = 6x^2 - 6x + 36$$

$$\Rightarrow f'(x) = 6(x^2 - x + 6)$$

$$\Rightarrow f'(x) = 6(x + 2)(x - 3)$$

If $f'(x) = 0$, then we get,

$$\Rightarrow x = -2, 3$$

So, the point $x = -2$ and $x = 3$ divides the real line into two disjoint intervals, $(-\infty, 2)$, $(-2, 3)$ and $(3, \infty)$.

So, in interval $(-2, 3)$

$$f'(x) = 6(x + 2)(x - 3) < 0$$

Therefore, the given function (f) is strictly decreasing in interval (-2, 3).

OR

Let r be the radius, V be the volume and S be the surface area of sphere

Then, we have $\frac{dV}{dt} = 8 \text{ cm}^3/\text{s}$

To find $\frac{dS}{dt}$, when

$$\therefore \frac{dV}{dt} = \frac{4}{3}\pi r^3$$

$$\Rightarrow \frac{dr}{dt} = \frac{2}{\pi r^2} \text{ cm/s} \quad \dots \dots \dots \text{(i)}$$

Now, $S = 4\pi r^2$

$$\begin{aligned} \therefore \frac{dS}{dt} &= \frac{d}{dt}(4\pi r^2) = 4\pi \times 2r \cdot \\ &= 8\pi r \times \frac{2}{\pi r^2} \quad [\text{From Eq(i)}] \\ &= \frac{16}{r} \\ \Rightarrow \left(\frac{dS}{dt} \right)_{r=12} &= \frac{16}{12} = \frac{4}{3} \text{ cm}^2/\text{s} \end{aligned}$$

24. Let $y = \int_0^{\pi/2} \frac{dx}{(1 + \sqrt{\tan x})}$

$$y = \int_0^{\frac{\pi}{2}} \frac{1}{1 + \sqrt{\sin x}} dx$$

$$y = \int_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\sin x + \sqrt{\cos x}}} \dots \dots \dots \text{(i)}$$

Using theorem of definite integral

$$\int_a^b f(x)dx = \int_a^b f(a+b-x)dx$$

$$y = \int_0^{\pi/2} \frac{\sqrt{\cos\left(\frac{\pi}{2} - x\right)}}{\left(\sqrt{\sin\left(\frac{\pi}{2} - x\right)} + \sqrt{\cos\left(\frac{\pi}{2} - x\right)}\right)} dx$$

$$y = \int_0^{\pi/2} \frac{\sqrt{\sin x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx \quad \dots \dots \text{ (ii)}$$

Adding eq (i) and eq (ii), we get

Adding eq.(I) and eq.(II), we get

$$2y = \int_0^{\pi/2} \frac{\sqrt{\cos x}}{(\sqrt{\sin x} + \sqrt{\cos x})} dx + \int_0^{\pi/2} \frac{\sqrt{\sin x}}{(\sqrt{\cos x} + \sqrt{\sin x})} dx$$

$$2y = \int_0^{\pi/2} \frac{\sqrt{\sin x} + \sqrt{\cos x}}{(\sqrt{\sin x} + \sqrt{\cos x})} dx$$

$$2y = \int_0^{\pi/2} 1 dx$$

$$2y = (x)_0^{\frac{\pi}{2}}$$

$$y = \frac{\pi}{4}$$

25. Given:- $f(x) = (x - 1) e^x + 1$

$$\Rightarrow f'(x) = \frac{d}{dx}((x - 1)e^x + 1)$$

$$= f(x) = e^x + (x - 1) e^x$$

$$= f(x) = e^x(1 + x - 1)$$

$$= f(x) = x e^x$$

as given

$$x > 0$$

$$= e^x > 0$$

$$= x e^x > 0$$

$$= f(x) > 0$$

Hence, the condition for $f(x)$ to be increasing

Thus, $f(x)$ is increasing for all $x > 0$

Section C

26. According to the question, $I = \int \frac{\sin(x-a)}{\sin(x+a)} dx$

$$\text{Put } x + a = t \Rightarrow dx = dt$$

$$\therefore I = \int \frac{\sin(t-a-a)}{\sin t} dt = \int \frac{\sin(t-2a)}{\sin t} dt$$

$$= \int \frac{\sin t \cos 2a - \cos t \sin 2a}{\sin t} dt$$

$$[\because \sin(A - B) = \sin A \cos B - \cos A \sin B]$$

$$= \int \cos 2a dt - \int \sin 2a \cdot \cot t dt$$

$$= \cos 2a [t] - \sin 2a [\log |\sin t|] + C_1$$

$$= (x + a) \cos 2a - \sin 2a \log |\sin(x + a)| + C_1$$

$$[\text{put } t = x + a]$$

$$= x \cos 2a - \sin 2a \log |\sin(x + a)| + C_1$$

27. Let A, B, C be the given students and let E_1, E_2 and E_3 be the events that the problem is solved by A, B, C respectively. Then, \bar{E}_1 , \bar{E}_2 and \bar{E}_3 are the events that the given problem is not solved by A, B, C respectively.

Therefore, we have,

$$P(E_1) = \frac{1}{2}; P(E_2) = \frac{1}{3}; P(E_3) = \frac{1}{4};$$

$$P(\bar{E}_1) = \left(1 - \frac{1}{2}\right) = \frac{1}{2}; P(\bar{E}_2) = \left(1 - \frac{1}{3}\right) = \frac{2}{3} \text{ and } P(\bar{E}_3) = \left(1 - \frac{1}{4}\right) = \frac{3}{4}$$

P(exactly one of them solves the problem)

$$= P[(E_1 \cap \bar{E}_2 \cap \bar{E}_3) \text{ or } (\bar{E}_1 \cap E_2 \cap \bar{E}_3) \text{ or } (\bar{E}_1 \cap \bar{E}_2 \cap E_3)]$$

$$= P(E_1 \cap \bar{E}_2 \cap \bar{E}_3) + P(\bar{E}_1 \cap E_2 \cap \bar{E}_3) + P(\bar{E}_1 \cap \bar{E}_2 \cap E_3)$$

$$= \{P(E_1) \times P(\bar{E}_2) \times P(\bar{E}_3)\} + [P(\bar{E}_1) \times P(E_2) \times P(\bar{E}_3)] + [P(\bar{E}_1) \times P(\bar{E}_2) \times P(E_3)]$$

$$= \left(\frac{1}{2} \times \frac{2}{3} \times \frac{3}{4}\right) + \left(\frac{1}{2} \times \frac{1}{3} \times \frac{3}{4}\right) + \left(\frac{1}{2} \times \frac{2}{3} \times \frac{1}{4}\right)$$

$$= \left(\frac{1}{4} + \frac{1}{8} + \frac{1}{12}\right) = \frac{11}{24}$$

28. Given, $I = \int_{-\pi}^{\pi} (\cos ax - \sin bx)^2 dx$

$$= \int_{-\pi}^{\pi} (\cos^2 ax + \sin^2 bx - 2 \cos ax \sin bx) dx$$

$$= \int_{-\pi}^{\pi} (\cos^2 ax + \sin^2 bx) dx - 2 \int_{-\pi}^{\pi} \cos ax \sin bx dx$$

$$= I_1 - I_2$$

Let,

$$I_1 = \int_{-\pi}^{\pi} (\cos^2 ax + \sin^2 bx) dx [\text{ be an even function}]$$

$$= 2 \int_0^{\pi} (\cos^2 ax + \sin^2 bx) dx$$

$$= 2 \int_0^{\pi} \left(\frac{1+\cos 2ax}{2} + \frac{1-\cos 2bx}{2}\right) dx$$

$$= \int_0^{\pi} (1 + \cos 2ax + 1 - \cos 2bx) dx$$

$$= \int_0^{\pi} (2 + \cos 2ax - \cos 2bx) dx$$

$$\begin{aligned}
&= \left(2x + \frac{\sin 2ax}{2a} - \frac{\sin 2bx}{2b} \right)_0^\pi \\
&= \left(2\pi + \frac{\sin 2a\pi}{2a} - \frac{\sin 2b\pi}{2b} \right) - 0 \\
&= 2\pi + \frac{\sin 2a\pi}{2a} - \frac{\sin 2b\pi}{2b} \\
I_2 &= 2 \int_{-\pi}^{\pi} (\cos ax \sin bx) dx \quad [\text{be a odd function}] \\
&= 0 \quad \left[\begin{array}{l} \because \int_{-a}^a f(x) dx = 2 \int_0^a f(x) dx, \text{ if } f(x) \text{ is even} \\ 0, \text{ if } f(x) \text{ is odd} \end{array} \right] \\
\therefore I &= I_1 - I_2 = 2\pi + \frac{\sin 2a\pi}{2a} - \frac{\sin 2b\pi}{2b}
\end{aligned}$$

OR

Let the given integral be,

$$\begin{aligned}
I &= \int \frac{dx}{x\sqrt{1+x^n}} \\
&= \int \frac{x^{n-1}dx}{x^{n-1}x^1\sqrt{1+x^n}} \\
&= \int \frac{x^{n-1}dx}{x^n\sqrt{1+x^n}}
\end{aligned}$$

Putting $x^n = t$

$$\begin{aligned}
&\Rightarrow n x^{n-1} dx = dt \\
&\Rightarrow x^{n-1} dx = \frac{dt}{n} \\
\therefore I &= \frac{1}{n} \int \frac{dt}{t\sqrt{1+t}}
\end{aligned}$$

let $1+t = p^2$

$$\begin{aligned}
&\Rightarrow dp = 2p \, dt \\
\therefore I &= \frac{1}{n} \int \frac{2p \, dt}{(p^2-1)p} \\
&= \frac{2}{n} \int \frac{dp}{p^2-1} \\
&= \frac{2}{n} \times \frac{1}{2} \log \left| \frac{p-1}{p+1} \right| + C \\
&= \frac{1}{n} \log \left| \frac{\sqrt{1+t-1}}{\sqrt{1+t+1}} \right| + C \\
&= \frac{1}{n} \log \left| \frac{\sqrt{1+x^n-1}}{\sqrt{1+x^n+1}} \right| + C
\end{aligned}$$

29. $(x^2 + y^2) dy = xy dx$

$$\begin{aligned}
&\Rightarrow \int \frac{x}{y} dy + \int \frac{y}{x} dy = \int dx \\
&\Rightarrow x \log y + \frac{y^2}{2x} = x + c
\end{aligned}$$

Now, at $x = 1; y = e$

$$x \log y + \frac{y^2}{2x} = x + c \Rightarrow x + \frac{e^2}{2} = x + c \Rightarrow c = \frac{e^2}{2}$$

Now at $x = x_0; y = e$

$$x_0 \log e + \frac{e^2}{2x_0} = x_0 + \frac{e^2}{2} \Rightarrow \frac{e^2}{2x_0} = \frac{e^2}{2} \Rightarrow x_0 = 1$$

OR

We have,

$$\frac{dy}{dx} + 2y \tan x = \sin x$$

which is a linear differential equation of the form $\frac{dy}{dx} + Py = Q$.

Here, $P = 2 \tan x$ and $Q = \sin x$

$$\therefore \text{IF} = e^{\int P dx} = e^{\int \tan x dx} = e^{2 \log |\sec x|}$$

$$= e^{\log \sec^2 x} \quad [\because m \log n = \log n^m]$$

$$= \sec^2 x \quad [\because e^{\log x} = x]$$

The general solution is given by

$$\begin{aligned}
y \times \text{IF} &= \int (Q \times \text{IF}) dx + C \quad \dots(i) \\
\Rightarrow y \sec^2 x &= \int (\sin x \cdot \sec^2 x) dx + C \\
\Rightarrow y \sec^2 x &= \int \sin x \cdot \frac{1}{\cos^2 x} dx + C \\
\Rightarrow y \sec^2 x &= \int \tan x \sec x dx + C \\
\Rightarrow y \sec^2 x &= \sec x + C \quad \dots(ii)
\end{aligned}$$

Also, given that $y = 0$, when $x = \frac{\pi}{3}$.

On putting $y = 0$ and $x = \frac{\pi}{3}$ in Eq. (ii), we get

$$0 \times \sec^2 \frac{\pi}{3} = \sec \frac{\pi}{3} + C$$

$$\Rightarrow 0 = 2 + C \Rightarrow C = -2$$

On putting the value of C in Eq. (ii), we get

$$y \sec^2 x = \sec x - 2$$

$$\therefore y = \cos x - 2 \cos^2 x$$

which is the required particular solution of the given differential equation

30. Our problem is to minimise the objective function $Z = 5x + 10y$... (i)

Subject to constraints

$$x + 2y \leq 120 \dots \text{(ii)}$$

$$x + y \geq 60 \dots \text{(iii)}$$

$$x - 2y \geq 0 \dots \text{(iv)}$$

$x \geq 0, y \geq 0$ (which is the non negative constraint which will restrict the feasible region to the first quadrant only)

Table of values for line (ii) $x + 2y = 120$ are given below.

x	0	120
y	60	0

Replace O (0, 0) in the inequality $x + 2y \leq 120$, we get

$$0 + 2 \times 0 \leq 120$$

$$\Rightarrow 0 \leq 120 \text{ (which is true)}$$

So, the half plane for the inequality of the line (ii) is towards the origin which means that the origin O(0,0) is a point in the feasible region of the inequality of the line (ii).

Secondly, draw the graph of the line $x + y = 60$. Hence the table of values of the line (iii) is given as follows.

x	0	60
y	60	0

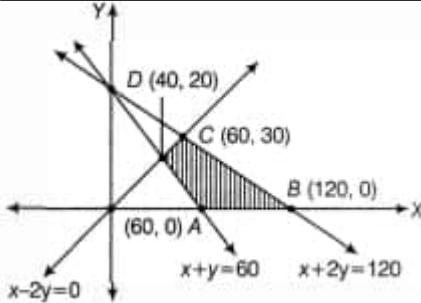
On replacing O(0, 0) in the inequality $x + y \geq 60$, we get

$$0 + 0 \geq 60 \Rightarrow 0 \geq 60 \text{ (which is false)}$$

So, the half plane for the inequality of the line (iii) is away from the origin, which means that the origin is not a point on the feasible region .

Thirdly, draw the graph of the line $x - 2y = 0$ and the table of values for (iv) is given as follows.

x	0	10
y	0	5



On solving equations $x - 2y = 0$ and $x + y = 60$, we get D(40,20) and on solving equations $x - 2y = 0$ and $x + 2y = 120$, we get C(60, 30)

Feasible region is ABCDA, which is a bounded feasible region, the coordinates of the corner points of the feasible region are given as A (60, 0), B (120, 0), C (60, 30) and D (40, 20).

Corner points	$Z = 5x + 10y$
A(60,0)	$Z = 300$ (minimum)
B(120,0)	$Z = 600$
C(60,0)	$Z = 600$
D(40,20)	$Z = 400$

The values of Z at these points are as follows So, the minimum value of Z is obtained as 300 , which occurs at the point (60, 0).

OR

$$i. z(A) = 13(4) - 15(0) = 52$$

$$z(B) = 13(5) - 15(2) = 35$$

$$z(C) = 13(3) - 15(4) = -21$$

$$z(D) = 13(0) - 15(2) = -30$$

$$z(0) = 0$$

$\therefore \text{Max}(z) = 52 \text{ at } A(4, 0), \text{Min}(z) = -30 \text{ at } (0, 2)$

$$ii. z(A) = z(B) \Rightarrow 4k + 0 = 5k + 2 \Rightarrow k = -2$$

$$31. \text{ Given } e^x + e^y = e^{x+y} \dots(i)$$

On dividing Eq(i) by e^{x+y} , we get,

$$e^{-y} + e^{-x} = 1 \dots(ii)$$

Therefore, on differentiating both sides of Eq(ii) w.r.t x, we get,

$$e^{-y} \cdot \left(\frac{-dy}{dx} \right) + e^{-x}(-1) = 0$$

$$\Rightarrow -e^{-y} \frac{dy}{dx} + e^{-x}(-1) = 0$$

$$\Rightarrow -e^{-y} \frac{dy}{dx} = e^{-x}$$

$$\Rightarrow \frac{dy}{dx} = -\frac{e^{-x}}{e^{-y}}$$

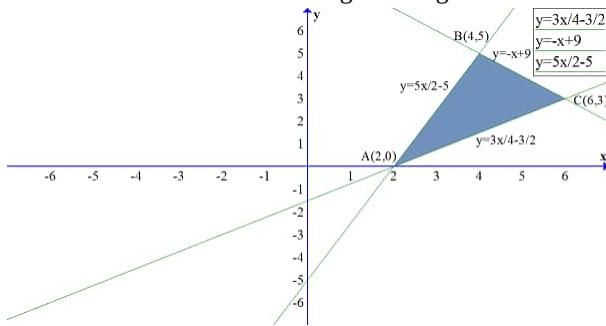
$$\Rightarrow \frac{dy}{dx} = -e^{(y-x)}$$

$$\therefore \frac{dy}{dx} + e^{(y-x)} = 0$$

Hence Proved.

Section D

$$32. \text{ Points in the form of line in the given diagram}$$



The equation of side AB is,

$$y - 0 = \frac{5-0}{4-2}(x - 2)$$

$$\Rightarrow y = \frac{5}{2}(x - 2)$$

The equation of side BC is,

$$y - 3 = \frac{5-3}{4-6}(x - 6)$$

$$\Rightarrow y - 3 = \frac{2}{-2}(x - 6)$$

$$\Rightarrow y - 3 = -1(x - 6)$$

$$\Rightarrow y = -x + 9$$

The equation of side AC is,

$$y - 0 = \frac{3-0}{6-2}(x - 2)$$

$$\Rightarrow y = \frac{3}{4}(x - 2)$$

$$\text{Area} = \frac{5}{2} \int_2^4 (x - 2)dx + \int_4^6 -(x - 9)dx - \frac{3}{4} \int_2^6 (x - 2)dx$$

$$A = \int_2^4 \frac{5}{2}(x - 2)dx + \int_0^1 -(x + 9)dx + \int_6^2 \frac{3}{4}(x - 2)dx$$

On integrating we get,

$$A = \frac{5}{2} \left[\frac{x^2}{2} - 2x \right]_2^4 + \left[\frac{-x^2}{2} + 9x \right]_1^0 - \frac{3}{4} \left[\frac{x^2}{2} - 2x \right]_2^6$$

On applying limits we get,

$$A = \frac{5}{2}[8 - 8 - 2 + 4] + [-18 + 54 + 8 - 36] - \frac{3}{4}[18 - 12 - 2 + 4]$$

$$A = 5 - 8 - \frac{3}{4}(8)$$

$$= 13 - 6 = 7 \text{ sq. units.}$$

Hence the required area is 7 sq. units.

33. Given that,

$$R = \{(1, 39), (2, 37), (3, 35) \dots (19, 3), (20, 1)\}$$

$$\text{Domain} = \{1, 2, 3, \dots, 20\}$$

$$\text{Range} = \{1, 3, 5, 7, \dots, 39\}$$

R is not reflexive as $(2, 2) \notin R$ as

$$2 \times 2 + 2 \neq 41$$

R is not symmetric

as $(1, 39) \in R$ but $(39, 1) \notin R$

R is not transitive

as $(11, 19) \in R, (19, 3) \in R$

But $(11, 3) \notin R$

Hence, R is neither reflexive, nor symmetric and nor transitive.

OR

We observe the following properties of f.

Injectivity: Let $x, y \in R_0$ such that $f(x) = f(y)$. Then,

$$f(x) = f(y) \Rightarrow \frac{1}{x} = \frac{1}{y} \Rightarrow x = y$$

So, $f : R_0 \rightarrow R_0$ is one-one.

Surjectivity: Let y be an arbitrary element of R_0 (co-domain) such that $f(x) = y$. Then,

$$f(x) = y \Rightarrow \frac{1}{x} = y \Rightarrow x = \frac{1}{y}$$

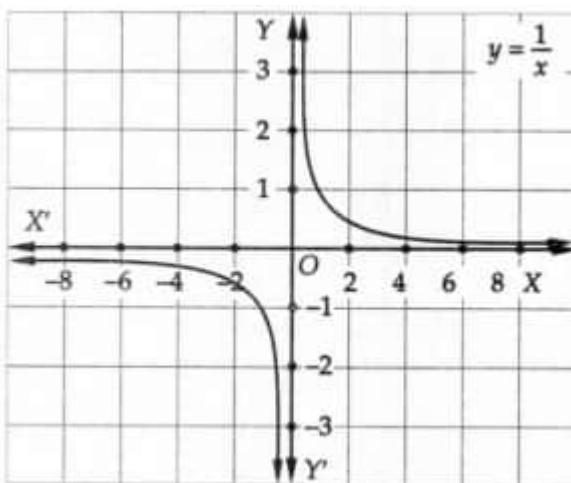
Clearly, $x = \frac{1}{y} \in R_0$ (domain) for all $y \in R_0$ (co-domain).

Thus, for each $y \in R_0$ (co-domain) there exists $x = \frac{1}{y} \in R_0$ (domain) such that $f(x) = \frac{1}{x} = y$

So, $f : R_0 \rightarrow R_0$ is onto.

Hence, $f : R_0 \rightarrow R_0$ is one-one onto.

This is also evident from the graph of $f(x)$ as shown in fig.



Let us now consider $f : N \rightarrow R_0$ given by $f(x) = \frac{1}{x}$

For any $x, y \in N$, we find that

$$f(x) = f(y) \Rightarrow \frac{1}{x} = \frac{1}{y} \Rightarrow x = y$$

So, $f : N \rightarrow R_0$ is one-one.

We find that $\frac{2}{3}, \frac{3}{5}$ etc. in co-domain R_0 do not have their pre-image in domain N. So, $f : N \rightarrow R_0$ is not onto.

Thus, $f : N \rightarrow R_0$ is one-one but not onto.

34. $x - y + z = 4$

$$x - 2y - 2z = 9$$

$$2x + y + 3z = 1$$

$$\text{Let } A = \begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3 \end{bmatrix} \quad X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \quad C = \begin{bmatrix} 4 \\ 9 \\ 1 \end{bmatrix}$$

Then, given system of equations can be rewritten as,

$$AX = C$$

$$\text{Now, } AB = \begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3 \end{bmatrix} \begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} 8 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 8 \end{bmatrix}$$

$$AB = 8I$$

$$A^{-1} = \frac{1}{8}B \left[\begin{array}{c} \because A^{-1}AB = 8A^{-1}I \\ B = 8A^{-1} \end{array} \right]$$

$$\Rightarrow A^{-1} = \frac{1}{8} \begin{bmatrix} \frac{-1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{-7}{8} & \frac{1}{8} & \frac{3}{8} \\ \frac{5}{8} & \frac{-3}{8} & \frac{-1}{8} \end{bmatrix}$$

$$\text{Now, } AX = C,$$

$$\Rightarrow X = A^{-1}C$$

$$\Rightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} \frac{-1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{-7}{8} & \frac{1}{8} & \frac{3}{8} \\ \frac{5}{8} & \frac{-3}{8} & \frac{-1}{8} \end{bmatrix} \begin{bmatrix} 4 \\ 9 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{-4}{2} + \frac{9}{2} + \frac{1}{2} \\ \frac{-28}{8} + \frac{9}{8} + \frac{3}{8} \\ \frac{20}{8} + \frac{-27}{8} + \frac{-1}{8} \end{bmatrix} = \begin{bmatrix} 3 \\ -2 \\ -1 \end{bmatrix}$$

$$\Rightarrow x = 3, y = -2, z = -1$$

35. Given

$$\vec{r} = (\hat{i} + 2\hat{j} - 4\hat{k}) + \lambda(2\hat{i} + 3\hat{j} + 6\hat{k})$$

$$\vec{r} = (3\hat{i} + 3\hat{j} - 5\hat{k}) + \mu(-2\hat{i} + 3\hat{j} + 8\hat{k})$$

Here, we have

$$\begin{aligned} \vec{a}_1 &= \hat{i} + 2\hat{j} - 4\hat{k} \\ \vec{b}_1 &= 2\hat{i} + 3\hat{j} + 6\hat{k} \\ \vec{a}_2 &= 3\hat{i} + 3\hat{j} - 5\hat{k} \\ \vec{b}_2 &= -2\hat{i} + 3\hat{j} + 8\hat{k} \end{aligned}$$

Thus,

$$\begin{aligned} \vec{b}_1 \times \vec{b}_2 &= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 6 \\ -2 & 3 & 8 \end{vmatrix} \\ &= \hat{i}(24 - 18) - \hat{j}(16 + 12) + \hat{k}(6 - 6) \\ \vec{b}_1 \times \vec{b}_2 &= 6\hat{i} - 28\hat{j} + 0\hat{k} \\ \therefore |\vec{b}_1 \times \vec{b}_2| &= \sqrt{6^2 + (-28)^2 + 0^2} \\ &= \sqrt{36 + 784 + 0} \\ &= \sqrt{820} \\ \vec{a}_2 - \vec{a}_1 &= (3 - 1)\hat{i} + (3 - 2)\hat{j} + (-5 + 4)\hat{k} \\ \therefore \vec{a}_2 - \vec{a}_1 &= 2\hat{i} + \hat{j} - \hat{k} \end{aligned}$$

Now, we have

$$\begin{aligned} (\vec{b}_1 \times \vec{b}_2) \cdot (\vec{a}_2 - \vec{a}_1) &= (6\hat{i} - 28\hat{j} + 0\hat{k}) \cdot (2\hat{i} + \hat{j} - \hat{k}) \\ &= (6 \times 2) + ((-28) \times 1) + (0 \times (-1)) \\ &= 12 - 28 + 0 \\ &= -16 \end{aligned}$$

Thus, the shortest distance between the given lines is

$$d = \left| \frac{(\vec{b}_1 \times \vec{b}_2) \cdot (\vec{a}_2 - \vec{a}_1)}{|\vec{b}_1 \times \vec{b}_2|} \right|$$

$$\Rightarrow d = \left| \frac{-16}{\sqrt{820}} \right|$$

$$\therefore d = \frac{16}{\sqrt{820}} \text{ units}$$

OR

Suppose the point $(1, 0, 0)$ be P and the point through which the line passes be $Q(1, -1, -10)$. The line is parallel to the vector $\vec{b} = 2\hat{i} - 3\hat{j} + 8\hat{k}$

Now,

$$\vec{PQ} = 0\hat{i} - \hat{j} - 10\hat{k}$$

$$\therefore \vec{b} \times \vec{PQ} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -3 & 8 \\ 0 & -1 & -10 \end{vmatrix}$$

$$= 38\hat{i} + 20\hat{j} - 2\hat{k}$$

$$\Rightarrow |\vec{b} \times \vec{PQ}| = \sqrt{38^2 + 20^2 + 2^2}$$

$$= \sqrt{1444 + 400 + 4}$$

$$= \sqrt{1848}$$

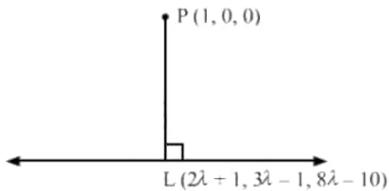
$$d = \frac{|\vec{b} \times \vec{PQ}|}{|\vec{b}|}$$

$$= \frac{\sqrt{1848}}{\sqrt{77}}$$

$$= \sqrt{24}$$

$$= 2\sqrt{6}$$

Suppose L be the foot of the perpendicular drawn from the point $P(1, 0, 0)$ to the given line-



The coordinates of a general point on the line

$$\frac{x-1}{2} = \frac{y+1}{-3} = \frac{z+10}{8} \text{ are given by}$$

$$\frac{x-1}{2} = \frac{y+1}{-3} = \frac{z+10}{8} = \lambda$$

$$\Rightarrow x = 2\lambda + 1$$

$$y = -3\lambda - 1$$

$$z = 8\lambda - 10$$

Suppose the coordinates of L be

$$(2\lambda + 1, -3\lambda - 1, 8\lambda - 10)$$

Since, The direction ratios of PL are proportional to,

$$2\lambda + 1 - 1, -3\lambda - 1 - 0, 8\lambda - 10 - 0, \text{ i.e., } 2\lambda, -3\lambda - 1, 8\lambda - 10$$

Since, The direction ratios of the given line are proportional to $2, -3, 8$, but PL is perpendicular to the given line.

$$\therefore 2(2\lambda) - 3(-3\lambda - 1) + 8(8\lambda - 10) = 0$$

$\Rightarrow \lambda = 1$ Substituting $\lambda = 1$ in $(2\lambda + 1, -3\lambda - 1, 8\lambda - 10)$ we get the coordinates of L as $(3, -4, -2)$. Equation of the line PL is given by

$$\frac{x-1}{3-1} = \frac{y-0}{-4-0} = \frac{z-0}{-2-0}$$

$$\Rightarrow \frac{x-1}{1} = \frac{y}{-2} = \frac{z}{-1}$$

$$\Rightarrow \vec{r} = \hat{i} + \lambda(\hat{i} - 2\hat{j} - \hat{k})$$

Section E

36. i. According to given information, we construct the following table.

Given, total applications = 2000

	Folk Genre	Classical Genre
	960 (given)	2000 - 960 = 1040

Below 18	192 (given)	1040 - 104 = 936
18 or Above 18	960 - 192 = 768	104 (given)

Let E_1 = Event that application for folk genre

E_2 = Event that application for classical genre

A = Event that application for below 18

B = Event that application for 18 or above 18

$$\therefore P(E_2) = \frac{1040}{2000}$$

$$\text{and } P(B \cap E_2) = \frac{104}{2000}$$

$$\text{Required Probability} = \frac{P(B \cap E_2)}{P(E_2)}$$

$$= \frac{\frac{104}{2000}}{\frac{1040}{2000}} = \frac{1}{10}$$

ii. Required probability = $P\left(\frac{\text{folk}}{\text{below 18}}\right)$

$$= P\left(\frac{E_1}{A}\right)$$

$$= \frac{P(E_1 \cap A)}{P(A)}$$

$$\text{Now, } P(E_1 \cap A) = \frac{192}{2000}$$

$$\text{and } P(A) = \frac{192+936}{2000} = \frac{1128}{2000}$$

$$\therefore \text{Required probability} = \frac{\frac{192}{2000}}{\frac{1128}{2000}} = \frac{192}{1128} = \frac{8}{47}$$

iii. Here,

$$P(A) = 0.4, P(B) = 0.8 \text{ and } P(B|A) = 0.6$$

$$\therefore P(B|A) = \frac{P(B \cap A)}{P(A)}$$

$$\Rightarrow P(B \cap A) = P(B|A) \cdot P(A)$$

$$= 0.6 \times 0.4 = 0.24$$

$$\because P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$= 0.4 + 0.8 - 0.24$$

$$= 1.2 - 0.24 = 0.96$$

OR

Since, A and B are independent events, A' and B' are also independent. Therefore,

$$P(A' \cap B') = P(A') \cdot P(B')$$

$$= (1 - P(A))(1 - P(B))$$

$$= \left(1 - \frac{3}{5}\right) \left(1 - \frac{4}{9}\right)$$

$$= \frac{2}{5} \cdot \frac{5}{9}$$

$$= \frac{2}{9}$$

37. i. Force applied by team A

$$= \sqrt{4^2 + 0^2}$$

$$= 4 \text{ N}$$

Force applied by team B

$$= \sqrt{(-2)^2 + 4^2}$$

$$= \sqrt{4 + 16}$$

$$= \sqrt{20}$$

$$= 2\sqrt{5} \text{ N}$$

Force applied by team C

$$= \sqrt{(-3)^2 + (-3)^2}$$

$$= \sqrt{9 + 9} = \sqrt{18} = 3\sqrt{2}$$

Hence, the force applied by team B is maximum.

So, Team 'B' will win.

ii. Sum of force applied by team A, B and C

$$= (4 + (-2) + (-3))\hat{i} + (0 + 4 + (-3))\hat{j}$$

$$= -\hat{i} + \hat{j}$$

Magnitude of team combine force

$$= \sqrt{(-1)^2 + (1)^2}$$

$$= \sqrt{2}N$$

iii. Force applied by team B

$$= \sqrt{(-2)^2 + 4^2}$$

$$= \sqrt{4 + 16}$$

$$= \sqrt{20}$$

$$= 2\sqrt{5} \text{ N}$$

OR

Force applied by team A

$$= \sqrt{4^2 + 0^2}$$

$$= 4 \text{ N}$$

38. i. P(x_1, y_1) is on the curve $y = x^2 + 7 \Rightarrow y_1 = x_1^2 + 7$

Distance from $P(x_1, x_1^2 + 7)$ and $(3, 7)$

$$D = \sqrt{(x_1 - 3)^2 + (x_1^2 + 7 - 7)^2}$$

$$\Rightarrow \sqrt{(x_1 - 3)^2 + (x_1^2)^2}$$

$$\Rightarrow D = \sqrt{x_1^4 + x_1^2 - 6x_1 + 9}$$

$$\text{ii. } D = \sqrt{x_1^4 + x_1^2 - 6x_1 + 9}$$

$$D' = x_1^4 + x_1^2 - 6x_1 + 9$$

$$\frac{dD'}{dx} = 4x_1^3 + 2x_1 - 6 = 0$$

$$\frac{dD'}{dx} = 2x_1^3 + x_1 - 3 = 0$$

$$\Rightarrow (x_1 - 1)(2x_1^2 + 2x_1 + 3) = 0$$

$$x_1 = 1 \text{ and } 2x_1^2 + 2x_1 + 3 = 0 \text{ gives no real roots}$$

The critical point is $(1, 8)$.

$$\text{iii. } \frac{dD'}{dx} = 4x_1^3 + 2x_1 - 6$$

$$\frac{d^2D'}{dx^2} = 12x_1^2 + 2$$

$$\left. \frac{d^2D'}{dx^2} \right|_{x_1=1} = 12 + 2 = 14 > 0$$

Hence distance is minimum at $(1, 8)$.

OR

$$D = \sqrt{x_1^4 + x_1^2 - 6x_1 + 9}$$

$$D = \sqrt{1 + 1 - 6 + 9} = \sqrt{5} \text{ units}$$