

Class XII Session 2023-24
Subject - Mathematics
Sample Question Paper - 6

Time Allowed: 3 hours

Maximum Marks: 80

General Instructions:

1. This Question paper contains - five sections A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.
2. Section A has 18 MCQ's and 02 Assertion-Reason based questions of 1 mark each.
3. Section B has 5 Very Short Answer (VSA)-type questions of 2 marks each.
4. Section C has 6 Short Answer (SA)-type questions of 3 marks each.
5. Section D has 4 Long Answer (LA)-type questions of 5 marks each.
6. Section E has 3 source based/case based/passage based/integrated units of assessment (4 marks each) with sub parts.

Section A

1. From the matrix equation $AB = AC$ we can conclude $B = C$, provided [1]

a) A is symmetric matrix	b) A is singular matrix
c) A is square matrix	d) A is non-singular matrix
2. For any 2×2 matrix, If $A(\text{adj } A) = \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}$, then $|A|$ is equal to [1]

a) 20	b) 10
c) 0	d) 100
3. If $\begin{vmatrix} 2 & 3 & 2 \\ x & x & x \\ 4 & 9 & 1 \end{vmatrix} + 3 = 0$, then the value of x is: [1]

a) 1	b) 0
c) -1	d) 3
4. If $y = 2^x$ then $\frac{dy}{dx} = ?$ [1]

a) $2^x (\log 2)$	b) None of these
c) $\frac{2^x}{(\log 2)}$	d) $x(2^{x-1})$
5. The planes: $2x - y + 4z = 5$ and $5x - 2.5y + 10z = 6$ are [1]

a) intersect y-axis	b) Parallel
c) passes through $\left(0, 0, \frac{5}{4}\right)$	d) Perpendicular
6. The solution of $\frac{dy}{dx} = |x|$ is [1]

a) $y = \frac{x^2}{2} + C$

c) $y = \frac{|x|}{2} + C$

b) $y = \frac{x|x|}{2} + C$

d) $y = \frac{x^3}{2} + C$

7. Maximise the function $Z = 11x + 7y$, subject to the constraints: $x \leq 3$, $y \leq 2$, $x \geq 0$, $y \geq 0$. [1]

a) 50

b) 48

c) 49

d) 47

8. Find λ and μ if $(2\hat{i} + 6\hat{j} + 27\hat{k}) \times (\hat{i} + \lambda\hat{j} + \mu\hat{k}) = \vec{0}$ [1]

a) 5, $\frac{27}{2}$

c) 3, $\frac{27}{5}$

b) 3, $\frac{27}{2}$

d) 4, $\frac{27}{2}$

9. $\int e^x (\tan x + \log \sec x) dx = ?$ [1]

a) $e^x(\log \cos x) + C$

b) $e^x \tan x + C$

c) $e^x \log \sec x + C$

d) None of these

10. If the matrix AB is zero, then [1]

a) $A = 0$ and $B = 0$

b) none of these

c) It is not necessary that either $A = 0$ or, $B = 0$

d) $A = 0$ or $B = 0$

11. The corner points of the feasible region determined by the following system of linear inequalities: [1]

$2x + y \leq 10$, $x + 3y \leq 15$, $x, y \geq 0$ are $(0, 0)$, $(5, 0)$, $(3, 4)$ and $(0, 5)$. Let $Z = px + qy$, where $p, q \geq 0$.

Condition on p and q so that the maximum of Z occurs at both $(3, 4)$ and $(0, 5)$ is

a) $p = 3q$

b) $q = 3p$

c) $p = q$

d) $p = 2q$

12. If \vec{a} , \vec{b} , \vec{c} are three vectors such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ and $|\vec{a}| = 2$, $|\vec{b}| = 3$, $|\vec{c}| = 5$, then value of $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$ is [1]

a) -19

b) 0

c) 38

d) 1

13. If $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ then $A^{-1} = ?$ [1]

a) -adj A

b) adj A

c) -A

d) A

14. A box contains 3 white and 2 black balls. Two balls are drawn at random one after the other. If the balls are not replaced, what is the probability that both the balls are black? [1]

a) None of these

b) $\frac{2}{5}$

c) $\frac{1}{5}$

d) $\frac{1}{10}$

15. The solution of the differential equation $x dx + y dy = x^2 y dy - y^2 x dx$ is [1]

a) $x^3 + 1 = C(1 - y^3)$

b) $x^3 - 1 = C(1 + y^3)$

c) $x^2 + 1 = C(1 - y^2)$

d) $x^2 - 1 = C(1 + y^2)$

16. Find the value of λ such that the vectors $\vec{a} = 2\hat{i} + \lambda\hat{j} + \hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} + 3\hat{k}$ are orthogonal. [1]

a) $\frac{3}{2}$

c) 1

b) 0

d) $\frac{-5}{2}$

17. If the function $f(x) = \begin{cases} \frac{k \cos x}{(\pi - 2x)}, & \text{when } x \neq \frac{\pi}{2} \\ 3, & \text{when } x = \frac{\pi}{2} \end{cases}$ be continuous at $x = \frac{\pi}{2}$, then the value of k is [1]

a) 6

c) -3

b) 3

d) -5

18. If the direction ratios of a line are proportional to 1, -3, 2, then its direction cosines are [1]

a) $\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}$

c) $\frac{1}{\sqrt{14}}, -\frac{3}{\sqrt{14}}, \frac{2}{\sqrt{14}}$

b) $-\frac{1}{\sqrt{14}}, -\frac{2}{\sqrt{14}}, -\frac{3}{\sqrt{14}}$

d) $-\frac{1}{\sqrt{14}}, \frac{3}{\sqrt{14}}, \frac{2}{\sqrt{14}}$

19. **Assertion (A):** The rate of change of area of a circle with respect to its radius r when $r = 6$ cm is 12π cm²/cm. [1]

Reason (R): Rate of change of area of a circle with respect to its radius r is $\frac{dA}{dr}$, where A is the area of the circle.

a) Both A and R are true and R is the correct explanation of A.

b) Both A and R are true but R is not the correct explanation of A.

c) A is true but R is false.

d) A is false but R is true.

20. **Assertion (A):** The Relation R given by $R = \{(1, 3), (4, 2), (2, 4), (2, 3), (3, 1)\}$ on set $A = \{1, 2, 3, 2\}$ is symmetric. [1]

Reason (R): For symmetric Relation $R = R^{-1}$

a) Both A and R are true and R is the correct explanation of A.

b) Both A and R are true but R is not the correct explanation of A.

c) A is true but R is false.

d) A is false but R is true.

Section B

21. Find the value of $\cos^{-1} \frac{1}{2} + 2 \sin^{-1} \frac{1}{2}$. [2]

OR

For the principal value, evaluate $\cot [\sin^{-1} \{\cos(\tan^{-1} 1)\}]$

22. The volume of a cube is increasing at the rate of $7 \text{ cm}^3/\text{sec}$. How fast is its surface area increasing at the instant when the length of an edge of the cube is 12 cm? [2]

23. Find the point of local maxima or local minima and the corresponding local maximum and minimum values of a function: $f(x) = -x^3 + 12x^2 - 5$. [2]

OR

Show that $f(x) = \cos^2 x$ is a decreasing function on $(0, \frac{\pi}{2})$.

24. Evaluate: $\int \left(\frac{1+\sin x}{1-\sin x} \right) dx$. [2]

25. Find the interval in function $f(x) = x^4 - 4x$ is increasing or decreasing. [2]

Section C

26. Find $\int \frac{5x-2}{1+2x+3x^2} dx$. [3]

27. In a bulb factory, three machines, A, B, C, manufacture 60%, 25% and 15% of the total production respectively. Of their respective outputs, 1%, 2% and 1% are defective. A bulb is drawn at random from the total product and it is found to be defective. Find the probability that it was manufactured by machine C.

28. Find $\int \frac{x^3}{x^4+3x^2+2} dx$. [3]

OR

Evaluate $\int_0^1 \tan^{-1} \left(\frac{2x}{1-x^2} \right) dx$

29. Solve the differential equation: $\frac{dy}{dx} = \frac{y}{x} + \sin\left(\frac{y}{x}\right)$

[3]

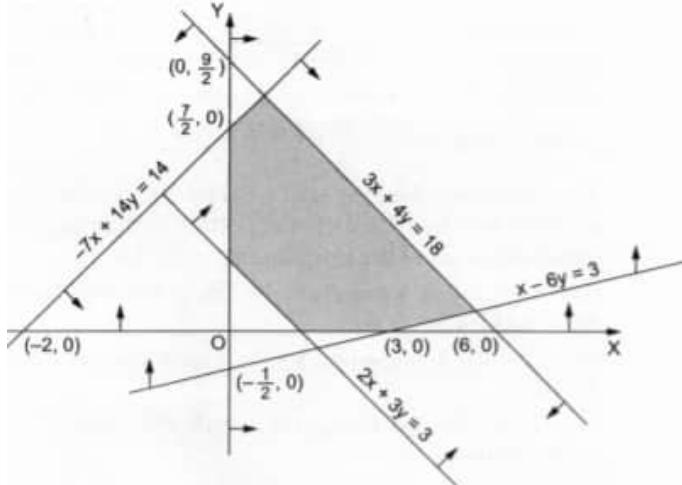
OR

Solve the differential equation: $\frac{dy}{dx} + y \cos x = \sin x \cos x$

30. Find the maximum value of $Z = 3x + 5y$ subject to the constraints $-2x + y \leq 4$, $x + y \geq 3$, $x - 2y \leq 2$, $x \geq 0$ and $y \geq 0$

OR

Find the linear constraints for which the shaded area in the figure below is the solution set



31. If $y = \sin(\sin x)$, prove that $\frac{d^2y}{dx^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0$

[3]

Section D

32. Find the area of the smaller region bounded by the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ and the line $\frac{x}{3} + \frac{y}{2} = 1$.

[5]

33. Show that the relation R in the set $A = \{1, 2, 3, 4, 5\}$ given by $R = \{(a, b) : |a - b|$ is divisible by 2} is an equivalence relation. Write all the equivalence classes of R.

OR

Show that the function $f : R \rightarrow \{x \in R : -1 < x < 1\}$ defined by $f(x) = \frac{x}{1+|x|}$, $x \in R$ is one-one and onto function.

34. A total amount of Rs 7000 is deposited in three different savings bank accounts with annual interest rates of 5%, 8% and $8\frac{1}{2}\%$, respectively. The total annual 2% interest from these three accounts is Rs 550. Equal amounts have been deposited in the 5% and 8% savings accounts. Find the amount deposited in each of the three accounts, with the help of matrices.

35. Find the image of the point $(5, 9, 3)$ in the line $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$

[5]

OR

$\overrightarrow{AB} = 3\hat{i} - \hat{j} + \hat{k}$ and $\overrightarrow{CD} = -3\hat{i} + 2\hat{j} + 4\hat{k}$ are two vectors. The position vectors of the points A and C are $6\hat{i} + 7\hat{j} + 4\hat{k}$ and $-9\hat{j} + 2\hat{k}$, respectively. Find the position vector of a point P on the line AB and a point Q on the line CD such that \overrightarrow{PQ} is perpendicular to \overrightarrow{AB} and \overrightarrow{CD} both.

Section E

36. **Read the text carefully and answer the questions:**

[4]

A shopkeeper sells three types of flower seeds A_1, A_2, A_3 . They are sold in the form of a mixture, where the proportions of these seeds are 4 : 4 : 2 respectively. The germination rates of the three types of seeds are 45%, 60% and 35% respectively.

Based on the above information:

- Calculate the probability that a randomly chosen seed will germinate.
- Calculate the probability that the seed is of type A2, given that a randomly chosen seed germinates.
- A die is thrown and a card is selected at random from a deck of 52 playing cards. Then find the probability of getting an even number on the die and a spade card.

OR

If A and B are any two events such that $P(A) + P(B) - P(A \text{ and } B) = P(A|B)$, then find $P(A|B)$.

37. **Read the text carefully and answer the questions:**

[4]

Renu purchased an air plant holder which is in the shape of a tetrahedron.

Let A, B, C and D are the coordinates of the air plant holder where $A \equiv (1, 1, 1)$, $B \equiv (2, 1, 3)$, $C \equiv (3, 2, 2)$ and $D \equiv (3, 3, 4)$.

- Find the position vector of \vec{AB}
- Find the position vector of \vec{AD} .
- Find area of $\triangle ABC$

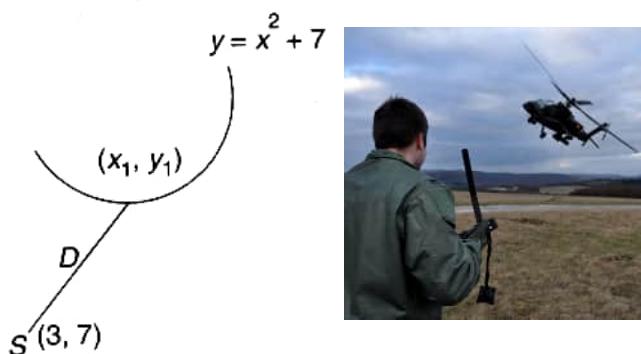
OR

Find the unit vector along \vec{AD}

38. **Read the text carefully and answer the questions:**

[4]

An Apache helicopter of the enemy is flying along the curve given by $y = x^2 + 7$. A soldier, placed at $(3, 7)$ want to shoot down the helicopter when it is nearest to him.



- If $P(x_1, y_1)$ be the position of a helicopter on curve $y = x^2 + 7$, then find distance D from P to soldier place at $(3, 7)$.
- Find the critical point such that distance is minimum.

Solution

Section A

1.

(d) A is non-singular matrix

Explanation: Here, only non- singular matrices obey cancellation laws.

2.

(b) 10

Explanation: We know that

$A \times \text{adj}A = |A| I_{n \times n}$, where I is the unit matrix of order $n \times n$.-----[1]

$$A(\text{adj}A) = \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix} \text{ Using the above property of matrices (1), we get}$$

$$A(\text{adj}A) = 10 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A(\text{adj} A) = (10) I_{2 \times 2}$$

$$|A| I_{2 \times 2} = 10 I_{2 \times 2}$$

$$|A| = 10$$

3.

(c) -1

Explanation: -1

4. **(a)** $2^x (\log 2)$

Explanation: Given that $y = 2^x$

Taking log both sides, we get

$$\log_e y = x \log_e 2 \text{ (Since } \log_a b^c = c \log_a b\text{)}$$

Differentiating with respect to x, we get

$$\frac{1}{y} \frac{dy}{dx} = \log_e 2 \text{ or } \frac{dy}{dx} = \log_e 2 \times y$$

$$\text{Hence } \frac{dy}{dx} = 2^x \log_e 2$$

5.

(b) Parallel

Explanation: Given

First Plane is $2x - y + 4z = 5$

Multiply both sides by 2.5, we get

$$5x - 2.5y + 10z = 12.5 \dots(i)$$

Second Plane is $5x - 2.5y + 10z = 6 \dots(ii)$

Clearly, the direction ratios of normals of both the plane (i) and (ii) are same.

Hence, Both the given planes are parallel.

6.

$$\text{(b)} \quad y = \frac{x|x|}{2} + C$$

$$\text{Explanation: } y = \frac{x|x|}{2} + C$$

7.

(d) 47

Explanation: We have , Maximise the function $Z = 11x + 7y$, subject to the constraints: $x \leq 3$, $y \leq 2$, $x \geq 0$, $y \geq 0$.

Corner points	$Z = 11x + 7y$

C(0, 0)	0
B (3,0)	33
D(0,2)	14
A(3, 2)	47

Hence the function has maximum value of 47

8.

(b) $3, \frac{27}{2}$

Explanation: It is given that:

$$(2\hat{i} + 6\hat{j} + 27\hat{k})X(\hat{i} + \lambda\hat{j} + \mu\hat{k}) = \vec{0}$$

$$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 6 & 27 \\ 1 & \lambda & \mu \end{vmatrix} = \hat{i}(6\mu - 27\lambda) - \hat{j}(2\mu - 27) + \hat{k}(2\lambda - 6) = \vec{0}, \text{ equating the coefficients of } \hat{i}, \hat{j}, \hat{k} \text{ on both sides, we get}$$

$$(6\mu - 27\lambda) = 0, (2\mu - 27) = 0, (2\lambda - 6) = 0.$$

$$\text{solving, we get } \lambda = 3, \mu = \frac{27}{2}$$

9.

(c) $e^x \log \sec x + C$

Explanation: $I = \int e^x \{f(x) + f'(x)\} dx$, where $f(x) = \log \sec x$

$$= e^x f(x) + C = e^x \log \sec x + C$$

10.

(c) It is not necessary that either $A = 0$ or, $B = 0$

Explanation: If the matrix AB is zero, then, it is not necessary that either $A = 0$ or, $B = 0$

11.

(b) $q = 3p$

Explanation: The maximum value of Z is unique.

It is given that the maximum value of Z occurs at two points $(3,4)$ and $(0,5)$

\therefore Value of Z at $(3, 4)$ = Value of Z at $(0, 5)$

$$\Rightarrow p(3) + q(4) = p(0) + q(5)$$

$$\Rightarrow 3p + 4q = 5q$$

$$\Rightarrow q = 3p$$

12. **(a)** -19

Explanation: Given that, $|\vec{a}| = 2$, $|\vec{b}| = 3$, $|\vec{c}| = 5$ and $\vec{a} + \vec{b} + \vec{c} = 0$

$$\Rightarrow (\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{a} + \vec{b} + \vec{c}) = 0$$

$$\Rightarrow \vec{a}^2 + \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{a} + \vec{b}^2 + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} + \vec{c} \cdot \vec{b} + \vec{c}^2 = 0$$

$$\Rightarrow \vec{a}^2 + \vec{b}^2 + \vec{c}^2 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 0$$

$$\Rightarrow 4 + 9 + 25 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 0 \quad (|\vec{a}| = 2, |\vec{b}| = 3, |\vec{c}| = 5)$$

$$\Rightarrow \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = -\frac{38}{2} = -19.$$

13.

(b) $\text{adj } A$

Explanation: $A = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$

$$|A| = \cos^2\theta - (-\sin^2\theta)$$

$$= \cos^2 \theta + (\sin^2 \theta)$$

= 1 ... (i)

$$\text{We know that } A^{-1} = \frac{1}{|A|} \text{adj } A$$

= adj A [From I]

14.

$$\text{(d) } \frac{1}{10}$$

Explanation: Total sample space, $n(S) = {}^5C_2$,

Now, favourable events,

$n(E) =$ Two selected balls are black.

$$= {}^3C_0 \times {}^2C_2$$

$$\therefore \text{Required probability} = \frac{n(E)}{n(S)}$$

$$= \frac{{}^3C_0 \times {}^2C_2}{{}^5C_2} = \frac{1 \times 1}{\frac{(5 \times 4)}{2}} = \frac{1}{10}$$

15.

$$\text{(d) } x^2 - 1 = C(1 + y^2)$$

Explanation: We have,

$$xdx + ydy = x^2y dy - y^2x dx$$

$$x dx + y^2x dx = x^2y dy - y dy$$

$$x(1 + y^2) dx = y(x^2 - 1) dy$$

$$\frac{xdx}{x^2 - 1} = \frac{ydy}{1 + y^2}$$

$$\int \frac{xdx}{x^2 - 1} = \int \frac{ydy}{1 + y^2}$$

$$\frac{1}{2} \int \frac{2xdx}{x^2 - 1} = \frac{1}{2} \int \frac{2ydy}{1 + y^2}$$

$$\frac{1}{2} \log(x^2 - 1) = \frac{1}{2} \log(1 + y^2) + \log c$$

$$\log(x^2 - 1) = \log(1 + y^2) + \log c$$

$$x^2 - 1 = (1 + y^2)c$$

16.

$$\text{(d) } \frac{-5}{2}$$

Explanation: Given that \vec{a} and \vec{b} are orthogonal.

$$\Rightarrow \vec{a} \cdot \vec{b} = 0$$

$$\Rightarrow \vec{a} \cdot \vec{b} = (2\hat{i} + \lambda\hat{j} + \hat{k}) \cdot (\hat{i} + 2\hat{j} + 3\hat{k}) = 0$$

$$\Rightarrow 2 + 2\lambda + 3 = 0 \quad (\because \hat{i} \cdot \hat{j} = 0, \hat{j} \cdot \hat{k} = 0, \hat{k} \cdot \hat{i} = 0)$$

$$\Rightarrow 2\lambda = -5$$

$$\Rightarrow \lambda = -\frac{5}{2}$$

17.

$$\text{(b) } 3$$

Explanation: Here, it is given that the function $f(x)$ is continuous at $x = \frac{\pi}{2}$.

$$\therefore \text{L. H. L} = \lim_{x \rightarrow \frac{\pi}{2}^-} f(x)$$

$$= \lim_{x \rightarrow \frac{\pi}{2}^-} \frac{k \cos x}{\frac{\pi}{2} - 2x}$$

Substituting, $x = \frac{\pi}{2} - h$;

As $x \rightarrow \frac{\pi}{2}$ then $h \rightarrow 0$

$$\therefore \lim_{x \rightarrow \frac{\pi}{2}} \frac{k \cos\left(\frac{\pi}{2} - h\right)}{\pi - 2\left(\frac{\pi}{2} - h\right)} = k \cdot \lim_{h \rightarrow 0} \frac{\sin h}{h}$$

$$\therefore \text{L.H.L} = k$$

As it is continuous which implies right hand limit equals left hand limit equals the value at that point.

$$\therefore k = 3$$

18.

(c) $\frac{1}{\sqrt{14}}, -\frac{3}{\sqrt{14}}, \frac{2}{\sqrt{14}}$

Explanation: $\frac{1}{\sqrt{14}}, -\frac{3}{\sqrt{14}}, \frac{2}{\sqrt{14}}$

The direction ratios of the line are proportional to 1, -3, 2

\therefore The direction cosines of the line are

$$\frac{1}{\sqrt{1^2 + (-3)^2 + 2^2}}, \frac{-3}{\sqrt{1^2 + (-3)^2 + 2^2}}, \frac{2}{\sqrt{1^2 + (-3)^2 + 2^2}} \\ = \frac{1}{\sqrt{14}}, \frac{-3}{\sqrt{14}}, \frac{2}{\sqrt{14}}$$

19. (a) Both A and R are true and R is the correct explanation of A.

Explanation: Both A and R are true and R is the correct explanation of A.

20.

(d) A is false but R is true.

Explanation: $R = \{(1, 3), (4, 2) (2, 7) (2, 3) (3, 1)\}$

As $(2, 3) \in R$ but $(3, 2) \notin R$

So, set 'A' is not symmetric.

Section B

21. Let $\cos^{-1}\left(\frac{1}{2}\right) = x$. Then, $\cos x = \frac{1}{2} = \cos\left(\frac{\pi}{3}\right)$.

$$\therefore \cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3}$$

Let $\sin^{-1}\left(\frac{1}{2}\right) = y$. Then, $\sin y = \frac{1}{2} = \sin\left(\frac{\pi}{6}\right)$.

$$\therefore \sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6}$$

$$\therefore \cos^{-1}\left(\frac{1}{2}\right) + 2\sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3} + \frac{2\pi}{6} = \frac{\pi}{3} + \frac{\pi}{3} = \frac{2\pi}{3}$$

OR

We know that $\tan^{-1}1 = \frac{\pi}{4}$.

$$\therefore \cot[\sin^{-1}\{\cos(\tan^{-1}1)\}]$$

$$= \cot\left\{\sin^{-1}\left(\cos\frac{\pi}{4}\right)\right\} = \cot\left(\sin^{-1}\frac{1}{\sqrt{2}}\right) = \cot\frac{\pi}{4} = 1$$

22. At any instant t, let the length of each edge of the cube be x, V be its volume and S be its surface area. Then,

$$\frac{dV}{dt} = 7 \text{ cm}^3/\text{sec} \dots \text{(given)} \dots \text{(i)}$$

$$\text{Now, } V = x^3 \Rightarrow \frac{dV}{dt} = \frac{dV}{dx} \cdot \frac{dx}{dt}$$

$$\begin{aligned}
\Rightarrow 7 &= \frac{d}{dx}(x^3) \cdot \frac{dx}{dt} \dots [\because V = x^3] \\
\Rightarrow 3x^2 \cdot \frac{dx}{dt} &= 7 \\
\Rightarrow \frac{dx}{dt} &= \frac{7}{3x^2} \\
\therefore S &= 6x^2 \Rightarrow \frac{dS}{dt} = \frac{dS}{dx} \cdot \frac{dx}{dt} \\
&= \frac{d}{dx}(6x^2) \cdot \frac{7}{3x^2} \\
&= \left(12x \times \frac{7}{3x^2}\right) = \frac{28}{x} \\
\Rightarrow \left[\frac{dS}{dt}\right]_{x=12} &= \left(\frac{28}{12}\right) \text{ cm}^2/\text{sec} = 2\frac{1}{3} \text{ cm}^2/\text{sec}
\end{aligned}$$

Hence, the surface area of the cube is increasing at the rate of $2\frac{1}{3} \text{ cm}^2/\text{sec}$ at the instant when its edge is 12 cm.

23. We have Local max. value is 251 at $x = 8$ and local min. value is -5 at $x = 0$

$$\text{Also } F'(x) = -3x^2 + 24x = 0$$

$$\Rightarrow -3x(x - 8) = 0$$

$$\Rightarrow x = 0, 8$$

$$F''(x) = -6x + 24$$

$F''(0) > 0$, 0 is the point of local min.

$F''(8) < 0$, 8 is the point of local max.

$$F(8) = 251 \text{ and } f(0) = -5$$

OR

$$\text{Given: } f(x) = \cos^2 x$$

Theorem:- Let f be a differentiable real function defined on an open interval (a, b) .

- i. If $f'(x) > 0$ for all $x \in (a, b)$, then $f(x)$ is increasing on (a, b)
- ii. If $f'(x) < 0$ for all $x \in (a, b)$ then $f(x)$ is decreasing on (a, b)

For the value of x obtained in (ii) $f(x)$ is increasing and for remaining points in its domain it is decreasing.

Here we have,

$$f(x) = \cos^2 x$$

$$\Rightarrow f(x) = \frac{d}{dx}(\cos^2 x)$$

$$= f'(x) = 3\cos x(-\sin x)$$

$$= f'(x) = -2\sin(x)\cos(x)$$

$$= f'(x) = -\sin 2x ; \text{ as } \sin 2A = 2\sin A \cos A$$

Now, as given

$$x \in \left(0, \frac{\pi}{2}\right)$$

$$= 2x \in (0, \pi)$$

$$= \sin(2x) > 0$$

$$= -\sin(2x) < 0$$

$$\Rightarrow f'(x) < 0$$

hence, it is the condition for $f(x)$ to be decreasing

Thus, $f(x)$ is decreasing on interval $\left(0, \frac{\pi}{2}\right)$.

$$\begin{aligned}
24. I &= \int \frac{(1 + \sin x)}{(1 - \sin x)} \times \frac{(1 + \sin x)}{(1 + \sin x)} dx \\
&= \int \frac{(1 + \sin x)^2}{(1 - \sin^2 x)} dx = \int \frac{(1 + \sin^2 x + 2\sin x)}{\cos^2 x} dx
\end{aligned}$$

$$\begin{aligned}
&= \int \left(\frac{1}{\cos^2 x} + \frac{\sin^2 x}{\cos^2 x} + \frac{2\sin x}{\cos^2 x} \right) dx \\
&= \int (\sec^2 x + \tan^2 x + 2\sec x \tan x) dx \\
&= \int (2\sec^2 x - 1 + 2\sec x \tan x) dx \\
&= 2 \int \sec^2 x dx - \int dx + 2 \int \sec x \tan x dx \\
&= 2 \tan x - x + 2 \sec x + C.
\end{aligned}$$

25. Given: $f(x) = x^4 - 4x$

$$\begin{aligned}
\Rightarrow f(x) &= \frac{d}{dx} (x^4 - 4x) \\
\Rightarrow f'(x) &= 4x^3 - 4
\end{aligned}$$

To find critical point of $f(x)$, we must have

$$\begin{aligned}
\Rightarrow f'(x) &= 0 \\
\Rightarrow 4x^3 - 4 &= 0 \\
\Rightarrow 4(x^3 - 1) &= 0 \\
\Rightarrow x &= 1
\end{aligned}$$

clearly, $f'(x) > 0$ if $x > 1$

and $f'(x) < 0$ if $x < 1$

Thus, $f(x)$ increases on $(1, \infty)$

and $f(x)$ is decreasing on interval $x \in (-\infty, 1)$

Section C

26. According to the question, $I = \int \frac{5x-2}{1+2x+3x^2} dx$

$(5x - 2)$ can be written as ,

$$\begin{aligned}
5x - 2 &= A \frac{d}{dx} (1 + 2x + 3x^2) + B \\
I &= \int \frac{5x-2}{1+2x+3x^2} dx = \int \frac{A \frac{d}{dx} (1 + 2x + 3x^2) + B}{1 + 2x + 3x^2} dx \dots (i) \\
\Rightarrow 5x - 2 &= A(2 + 6x) + B
\end{aligned}$$

Comparing the coefficients of x and constant terms,

$$5 = 6A \Rightarrow A = \frac{5}{6}$$

$$\text{and } -2 = 2A + B \Rightarrow B = -2A - 2$$

$$= -\frac{5}{3} - 2 = -\frac{11}{3} \quad \left[\because A = \frac{5}{6} \right]$$

From Eq. (i), we get

$$\begin{aligned}
I &= \int \frac{\frac{5}{6}(2+6x) - \frac{11}{3}}{1+2x+3x^2} dx \\
\Rightarrow I &= \int \frac{\frac{5}{6}(2+6x)}{1+2x+3x^2} dx - \int \frac{\left(\frac{11}{3}\right)}{1+2x+3x^2} dx \\
\Rightarrow I &= I_1 - I_2 \dots (ii)
\end{aligned}$$

$$\text{where, } I_1 = \frac{5}{6} \int \frac{2+6x}{1+2x+3x^2} dx$$

$$\text{Put } 1 + 2x + 3x^2 = t \Rightarrow (2 + 6x)dx = dt$$

$$\begin{aligned}
\therefore I_1 &= \frac{5}{6} \int \frac{dt}{t} = \frac{5}{6} \log|t| + C_1 \\
&= \frac{5}{6} \log|1 + 2x + 3x^2| + C_1 \quad [t = 1 + 2x + 3x^2]
\end{aligned}$$

$$\begin{aligned}
\text{where, } I_2 &= \frac{11}{3} \int \frac{dx}{3x^2 + 2x + 1} \\
&= \frac{11}{9} \int \frac{dx}{\left[x^2 + \frac{2x}{3} + \frac{1}{3} \right]} \\
&= \frac{11}{9} \int \frac{dx}{\left[x^2 + \frac{2x}{3} + \frac{1}{3} + \frac{1}{9} - \frac{1}{9} \right]} \\
&= \frac{11}{9} \int \frac{dx}{\left[x^2 + \frac{2x}{3} + \frac{1}{9} + \frac{1}{3} - \frac{1}{9} \right]} \\
&= \frac{11}{9} \int \frac{dx}{\left(x + \frac{1}{3} \right)^2 + \frac{2}{9}} \\
&= \frac{11}{9} \int \frac{dx}{\left(x + \frac{1}{3} \right)^2 + \frac{2}{9}} [\because (a+b)^2 = a^2 + b^2 + 2ab]
\end{aligned}$$

$$\begin{aligned}
&= \frac{11}{9} \cdot \frac{1}{\sqrt{2}} \tan^{-1} \left(\frac{x + \frac{1}{3}}{\sqrt{2}} \right) + C_2 \left[\because \int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right) + c \right] \\
&= \frac{11}{3\sqrt{2}} \tan^{-1} \left(\frac{3x+1}{\sqrt{2}} \right) + C_2
\end{aligned}$$

Putting the values of I_1 and I_2 in Equation (ii),

$$\begin{aligned}
\Rightarrow I &= \frac{5}{6} \log |1 + 2x + 3x^2| + C_1 - \frac{11}{3\sqrt{2}} \tan^{-1} \left(\frac{3x+1}{\sqrt{2}} \right) - C_2 \\
\Rightarrow I &= \frac{5}{6} \log |1 + 2x + 3x^2| - \frac{11}{3\sqrt{2}} \tan^{-1} \left(\frac{3x+1}{\sqrt{2}} \right) + C [\because C = C_1 - C_2]
\end{aligned}$$

27. Consider the following events:

A: bulb is manufactured by machine A

B: bulb is manufactured by machine B

C: bulb is manufactured by machine C

D: Bulb is defective

Now, we have,

$$P(A) = \text{probability that bulb is made by machine A} = \frac{60}{100}$$

$$P(B) = \text{probability that bulb is made by machine B} = \frac{25}{100}$$

$$P(C) = \text{probability that bulb is made by machine C} = \frac{15}{100}$$

$$P\left(\frac{D}{A}\right) = \text{probability of defective bulb from machine A} = \frac{1}{100}$$

$$P\left(\frac{D}{B}\right) = \text{probability of defective bulb from machine B} = \frac{2}{100}$$

$$P\left(\frac{D}{C}\right) = \text{probability of defective bulb from machine C} = \frac{1}{100}$$

We want to find $P\left(\frac{C}{D}\right)$, i.e. Probability that the selected defective bulb is manufactured by machine C is ,

$$\begin{aligned}
P\left(\frac{C}{D}\right) &= \frac{P(C) \cdot P(D|C)}{P(A) \cdot P(D|A) + P(B) \cdot P(D|B) + P(C) \cdot P(D|C)} \\
&= \frac{\frac{15}{100} \times \frac{1}{100}}{\frac{60}{100} \times \frac{1}{100} + \frac{25}{100} \times \frac{2}{100} + \frac{15}{100} \times \frac{1}{100}} \\
P\left(\frac{C}{D}\right) &= \frac{\frac{15}{100}}{\frac{60}{100} + \frac{50}{100} + \frac{15}{100}}
\end{aligned}$$

$$= \frac{15}{125} = \frac{3}{25}$$

Conclusion: Therefore, the probability of selected defective bulb is from machine C is $\frac{3}{25}$.

28. According to the question, $I = \int \frac{x^3}{x^4 + 3x^2 + 2} dx$

$$I = \int \frac{x^2 \cdot x}{x^4 + 3x^2 + 2} dx$$

Let $x^2 = t \Rightarrow 2x dx = dt$

$$\Rightarrow x dx = \frac{dt}{2}$$

$$\therefore I = \frac{1}{2} \int \frac{t}{t^2 + 3t + 2} dt$$

$$= \frac{1}{2} \int \frac{t}{(t+2)(t+1)} dt$$

By using partial fractions,

$$\frac{t}{(t+2)(t+1)} = \frac{A}{t+2} + \frac{B}{t+1}$$

$$I = \frac{1}{2} \int \frac{t}{(t+2)(t+1)} dt = \frac{1}{2} \int \frac{A}{t+2} + \frac{B}{t+1} dt .(i)$$

$$t = A(t+1) + B(t+2)$$

$$\text{if } t = -2 \Rightarrow -2 = A(-1), \therefore A = 2$$

$$\text{if } t = -1 \Rightarrow -1 = B(1), \therefore B = -1$$

put values of A and B in (i)

$$\begin{aligned} I &= \frac{1}{2} \left[\int \frac{2}{t+2} dt - \int \frac{1}{t+1} dt \right] \\ &= \frac{1}{2} [2\log|t+2| - \log|t+1|] + C \\ &= \log|t+2| - \frac{1}{2}\log|t+1| + C \\ &= \log|t+2| - \log\sqrt{t+1} + C \end{aligned}$$

$$= \log \left| \frac{t+2}{\sqrt{t+1}} \right| + C$$

put $t = x^2$

$$I = \log \left| \frac{x^2 + 2}{\sqrt{x^2 + 1}} \right| + C$$

OR

Let us make substitution

$$x = \tan \theta$$

Differentiating w.r.t. x, we get

$$dx = \sec^2 \theta d\theta$$

Now,

$$x = 0 \Rightarrow \theta = 0$$

$$\int_0^1 \tan^{-1} \left(\frac{2x}{1-x^2} \right) dx$$

$$\int_0^1 \tan^{-1} \left(\frac{2x}{1-x^2} \right) dx$$

$$= \int_0^{\pi} \tan^{-1} \left(\frac{2\tan \theta}{1-\tan^2 \theta} \right) \sec^2 \theta d\theta \left[\because \tan^2 \theta = \frac{2\tan \theta}{1-\tan^2 \theta} \right]$$

$$= \int_0^{\pi} \tan^{-1}(\tan 2\theta) \sec^2 \theta d\theta$$

$$= \int_0^{\pi} 2\theta \sec^2 \theta d\theta$$

Applying by parts, we get

$$= 2 \left[\theta \int_0^{\pi} \sec^2 \theta d\theta - \int_0^{\pi} \left(\sec^2 \theta d\theta \right) \frac{d\theta}{d\theta} \right]$$

$$= 2[\theta \tan \theta]_0^{\pi} - \int_0^{\pi} \tan \theta d\theta$$

$$= 2[\theta \tan \theta + \log(\cos \theta)]_0^{\pi}$$

$$= 2 \left[\frac{\pi}{4} + \log \left(\frac{1}{\sqrt{2}} \right) - 0 - 0 \right]$$

$$= 2 \left[\frac{\pi}{4} + \frac{1}{2} \log 2 \right]$$

$$= \frac{\pi}{2} - \log 2$$

$$\therefore \int_0^1 \tan^{-1} \left(\frac{2x}{1-x^2} \right) dx = \frac{\pi}{2} - \log 2$$

29. The given differential equation is,

$$\frac{dy}{dx} = \frac{y}{x} + \sin \left(\frac{y}{x} \right)$$

This is a homogeneous differential equation

Putting $y = vx$ and $\frac{dy}{dx} = v + x \frac{dv}{dx}$, we get

$$v + x \frac{dv}{dx} = v + \sin v$$

$$\Rightarrow x \frac{dv}{dx} = \sin v - v$$

$$\Rightarrow \frac{1}{\sin v} dv = \frac{1}{x} dx$$

Integrating both sides, we have,

$$\int \frac{1}{\sin v} dv = \int \frac{1}{x} dx$$

$$\Rightarrow \int \cosec v dv = \int \frac{1}{x} dx$$

$$\Rightarrow \log \left| \tan \frac{v}{2} \right| = \log |x| + \log C$$

$$\Rightarrow \log \left| \tan \frac{v}{2} \right| = \log |x| + \log C$$

$$\Rightarrow \log \left| \tan \frac{v}{2} \right| = \log |Cx|$$

$$\Rightarrow \tan \frac{v}{2} = Cx$$

Putting $v = \frac{y}{x}$, we get

$$\Rightarrow \tan \left(\frac{y}{2x} \right) = Cx$$

Hence, $\tan \left(\frac{y}{2x} \right) = Cx$ is the required solution.

OR

The given differential equation is,

$$\frac{dy}{dx} + y \cos x = \sin x \cos x$$

It is a linear differential equation. Comparing it with,

$$\frac{dy}{dx} + Py = Q$$

$$P = \cos x, Q = \sin x \cos x$$

$$\text{I.F.} = e^{\int P dx}$$

$$= e^{\int \cos x dx}$$

$$= e^{\sin x}$$

Solution of the equation is given by,

$$y \times (\text{I.F.}) = \int Q \times (\text{I.F.}) dx + c$$

$$y (e^{\sin x}) = \int \sin x \cos x e^{\sin x} dx + c$$

$$\text{Let } \sin x = t$$

$$\cos x dx = dt$$

$$ye^t = \int t \times e^t dt + c$$

$$= t \times \int e^t dt - \int (1 \int e^t dt) dt + c$$

$$ye^t = te^t - e^t + c$$

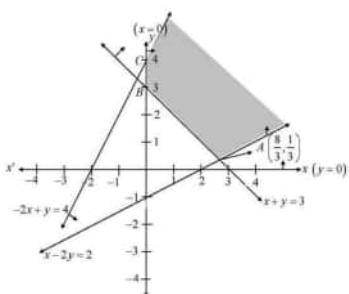
$$ye^t = e^t (t - 1) + c$$

$$y = t - 1 + ce^{-t}$$

$$y = \sin x - 1 + ce^{-\sin x}$$

30. Given $Z = 3x + 5y$ subject to the constraints $-2x + y \leq 4$, $x + y \geq 3$, $x - 2y \leq 2$, $x \geq 0$ and $y \geq 0$

Now draw the line $-2x + y = 4$, $x + y = 3$, and $x - 2y = 2$



and shaded region satisfied by above inequalities

Here, the feasible region is unbounded.

The corner points are given as $A\left(\frac{8}{3}, \frac{1}{3}\right)$, $B(0, 3)$ and $C(0, 4)$

The value of Z at following points is given by $A\left(\frac{8}{3}, \frac{1}{3}\right) = 3 \times \frac{8}{3} + 5 \times \frac{1}{3} = \frac{29}{3}$, at $B(0, 3) = 3 \times 0 + 5 \times 3 = 15$ and at $C(0, 4) = 3 \times 0 + 5 \times 4 = 20$

At corner points, the maximum value of Z is 20 which occurs at $C(0, 4)$

At corner points, the maximum value of Z is 20 which occurs at $C(0, 4)$

Since the feasible region is unbounded. Thus, the maximum value of Z is undefined.

OR

Consider the line $3x + 4y = 18$.

Clearly, $0(0, 0)$ satisfies $3x + 4y < 18$ Clearly, the shaded area and $(0, 0)$ lie on the same side of the line $3x + 4y = 18$.

Therefore, we must have $3x + 4y < 18$

Consider the line $x - 6y = 3$

We note that $(0, 0)$ satisfies the inequation $x - 6y < 3$ Also, the shaded area and $(0, 0)$ lie on the same side of the line $x - 6y = 3$.

Therefore, we must have $x - 6y < 3$

Consider the line $2x + 3y = 3$

Clearly, $(0, 0)$ satisfies the inequation $2x + 3y < 3$

But, the shaded region and the point $(0, 0)$ lie on the opposite sides of the line $2x + 3y = 3$.

Clearly, $(0, 0)$ satisfies the inequation $-7x + 14y < 14$ Also, the shaded region and the point $(0, 0)$ lie on the same side of the line $-7x + 14y = 14$.

Therefore, we must have $-7x + 14y < 14$ The shaded region is above the x-axis and on the right-hand side of the y-axis,

Therefore, we have $y > 0$ and $x > 0$.

Therefore, the linear constraints for which the shaded area in the given figure is the solution set, are

$$3x + 4y \leq 18, x - 6y \leq 3, 2x + 3y \geq 3$$

$$-7x + 14y \leq 14, x \geq 0 \text{ and } y \geq 0$$

31. Given,

$$y = \sin(\sin x) \dots(i)$$

$$\text{To prove: } \frac{d^2y}{dx^2} + \tan x \cdot \frac{dy}{dx} + y \cos^2 x = 0$$

To find the above equation we will find the derivative twice.

$$\text{As } \frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right)$$

So, lets first find dy/dx

$$\frac{dy}{dx} = \frac{d}{dx} \sin(\sin x)$$

Using chain rule, we will differentiate the above expression

Let $t = \sin x$

$$\Rightarrow \frac{dt}{dx} = \cos x$$

$$\frac{dy}{dx} = \frac{dy}{dt} \frac{dt}{dx}$$

$$\frac{dy}{dx} = \cos t \cos x = \cos(\sin x) \cos x \dots(ii)$$

Again differentiating with respect to x applying product rule:

$$\frac{d^2y}{dx^2} = \cos x \frac{d}{dx} \cos(\sin x) + \cos(\sin x) \frac{d}{dx} \cos x$$

Using chain rule again in the next step-

$$\frac{d^2y}{dx^2} = -\cos x \cos x \sin(\sin x) - \sin x \cos(\sin x)$$

$$\frac{d^2y}{dx^2} = -y \cos^2 x - \tan x \cos x \cos(\sin x)$$

[using equation (i) : $y = \sin(\sin x)$]

And using equation (ii) we have:

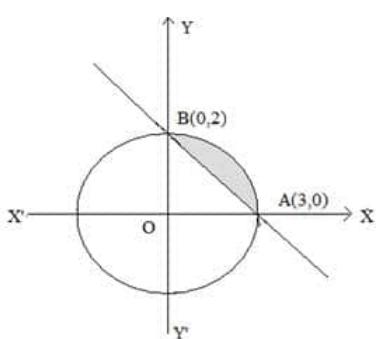
$$\frac{d^2y}{dx^2} = -y \cos^2 x - \tan x \frac{dy}{dx}$$

$$\frac{d^2y}{dx^2} + y \cos^2 x + \tan x \frac{dy}{dx} = 0$$

Hence proved.

Section D

32.



$$\frac{x^2}{9} + \frac{y^2}{4} = 1 \dots\dots\dots(1)$$

$$\frac{x}{3} + \frac{y}{2} = 1 \dots\dots\dots(2)$$

$$\Rightarrow \frac{x^2}{(3)^2} + \frac{y^2}{(2)^2} = 1 \text{ is the equation of ellipse and } \frac{x}{3} + \frac{y}{2} = 1 \text{ is the equation of intercept form of line.}$$

On solving (1) and (2), we get points of intersection as (0,2) and (3,0).

$$\text{Area} = \frac{2}{3} \int_0^3 \sqrt{9 - x^2} dx - \int_0^3 \left(\frac{6-2x}{3} \right) dx$$

$$\begin{aligned}
&= \frac{2}{3} \left[\frac{x}{2} \sqrt{3^2 - x^2} + \frac{3^2}{2} \sin^{-1} \frac{x}{3} \right]_0^3 - \frac{1}{3} \left[6x - \frac{2x^2}{2} \right]_0^3 \\
&= \frac{2}{3} \left[\frac{9\pi}{4} \right] - \frac{1}{3} [9] \\
&= \frac{3\pi}{2} - 3 \\
&= \frac{3}{2}(\pi - 2) \text{ sq unit.}
\end{aligned}$$

33. $R = \{(a,b) = |a-b| \text{ is divisible by 2}\}$

where $a, b \in A = \{1, 2, 3, 4, 5\}$

reflexivity

For any $a \in A, |a-a|=0$ Which is divisible by 2.

$$\therefore (a, a) \in R \text{ for all } a \in A$$

So, R is Reflexive

Symmetric :

Let $(a, b) \in R$ for all $a, b \in R$

$|a-b|$ is divisible by 2

$|b-a|$ is divisible by 2

$$(a, b) \in R \Rightarrow (b, a) \in R$$

So, R is symmetric.

Transitive :

Let $(a, b) \in R$ and $(b, c) \in R$ then

$$(a, b) \in R \text{ and } (b, c) \in R$$

$|a-b|$ is divisible by 2

$|b-c|$ is divisible by 2

Two cases :

Case 1:

When b is even

$$(a, b) \in R \text{ and } (b, c) \in R$$

$|a-c|$ is divisible by 2

$|b-c|$ is divisible by 2

$|a-c|$ is divisible by 2

$$\therefore (a, c) \in R$$

Case 2:

When b is odd

$$(a, b) \in R \text{ and } (b, c) \in R$$

$|a-c|$ is divisible by 2

$|b-c|$ is divisible by 2

$|a-c|$ is divisible by 2

Thus, $(a, b) \in R$ and $(b, c) \in R \Rightarrow (a, c) \in R$

So R is transitive.

Hence, R is an equivalence relation

OR

f is one-one: For any $x, y \in R - \{+1\}$, we have $f(x) = f(y)$

$$\Rightarrow \frac{x}{1+|x|} = \frac{y}{|y|+1}$$

$$\Rightarrow xy + x = xy + y$$

$$\Rightarrow x = y$$

Therefore, f is one-one function.

If f is one-one, let $y = R - \{1\}$, then $f(x) = y$

$$\Rightarrow \frac{x}{x+1} = y$$

$$\Rightarrow x = \frac{y}{1-y}$$

It is clear that $x \in R$ for all $y = R - \{1\}$, also $x \neq -1$

Because $x = -1$

$$\Rightarrow \frac{y}{1-y} = -1$$

$$\Rightarrow y = -1 + y$$

which is not possible.

Thus for each $R - \{1\}$ there exists $x = \frac{y}{1-y} \in R - \{1\}$ such that

$$f(x) = \frac{x}{x+1} = \frac{\frac{y}{1-y}}{\frac{y}{1-y} + 1} = y$$

Therefore f is onto function.

34. Let Rs x , Rs y and Rs z be invested in saving accounts at the rate of 5%, 8% and $8\frac{1}{2}\%$, respectively.

Then, according to given condition, we have the following system of equations

$$x + y + z = 7000, \dots (i)$$

$$\text{and } \frac{5x}{100} + \frac{8y}{100} + \frac{17z}{200} = 550$$

$$\Rightarrow 10x + 16y + 17z = 110000 \dots (ii)$$

$$\text{Also, } x - y = 0 \dots (iii)$$

This system of equations can be written in matrix form as $AX = B$

$$\text{where, } A = \begin{bmatrix} 1 & 1 & 1 \\ 10 & 16 & 17 \\ 1 & -1 & 0 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } B = \begin{bmatrix} 7000 \\ 110000 \\ 0 \end{bmatrix}$$

$$\text{Here, } |A| = \begin{vmatrix} 1 & 1 & 1 \\ 10 & 16 & 17 \\ 1 & -1 & 0 \end{vmatrix}$$

$$\Rightarrow |A| = 1(0 + 17) - 1(0 - 17) + 1(-10 - 16) \\ = 17 + 17 - 26 = 8 \neq 0$$

So, A is non-singular matrix and its inverse exists.

Now, cofactors of elements of $|A|$ are,

$$A_{11} = (-1)^2 \begin{vmatrix} 16 & 17 \\ -1 & 0 \end{vmatrix} = 1(0 + 17) = 17$$

$$A_{12} = (-1)^3 \begin{vmatrix} 10 & 17 \\ 1 & 0 \end{vmatrix} = -1(0 - 17) = 17$$

$$A_{13} = (-1)^4 \begin{vmatrix} 10 & 16 \\ 1 & -1 \end{vmatrix} = 1(-10 - 16) = -26$$

$$A_{21} = (-1)^3 \begin{vmatrix} 1 & 1 \\ -1 & 0 \end{vmatrix} = -1(0 + 1) = -1$$

$$A_{22} = (-1)^4 \begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix} = 1(0 - 1) = -1$$

$$A_{23} = (-1)^5 \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} = -1(-1 - 1) = 2$$

$$A_{31} = (-1)^4 \begin{vmatrix} 1 & 1 \\ 16 & 17 \end{vmatrix} = 1(17 - 16) = 1$$

$$A_{32} = (-1)^5 \begin{vmatrix} 1 & 1 \\ 10 & 17 \end{vmatrix} = -1(17 - 10) = -7$$

$$A_{33} = (-1)^6 \begin{vmatrix} 1 & 1 \\ 10 & 16 \end{vmatrix} = 1(16 - 10) = 6$$

$$\therefore \text{adj}(A) = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix}_T$$

$$= \begin{bmatrix} 17 & 17 & -26 \\ -1 & -1 & 2 \\ 1 & -7 & 6 \end{bmatrix}_T = \begin{bmatrix} 17 & -1 & 1 \\ 17 & -1 & -7 \\ -26 & 2 & 6 \end{bmatrix}$$

$$\text{Now, } A^{-1} = \frac{\text{adj}(A)}{|A|} = \frac{1}{8} \begin{bmatrix} 17 & -1 & 1 \\ 17 & -1 & -7 \\ -26 & 2 & 6 \end{bmatrix}$$

and the solution of given system is given by

$$X = A^{-1} B.$$

$$\Rightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{8} \begin{bmatrix} 17 & -1 & 1 \\ 17 & -1 & -7 \\ -26 & 2 & 6 \end{bmatrix} \begin{bmatrix} 7000 \\ 110000 \\ 0 \end{bmatrix}$$

$$= \frac{1}{8} \begin{bmatrix} 119000 - 110000 + 0 \\ 119000 - 110000 + 0 \\ -182000 + 220000 + 0 \end{bmatrix}$$

$$= \frac{1}{8} \begin{bmatrix} 9000 \\ 9000 \\ 38000 \end{bmatrix} = \begin{bmatrix} 1125 \\ 1125 \\ 4750 \end{bmatrix}$$

On comparing the corresponding elements, we get $x = 1125$, $y = 1125$, $z = 4750$.

Hence, the amount deposited in each type of account is Rs 1125, Rs 1125 and Rs 4750, respectively.

35. Suppose,

$$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4} = \lambda$$

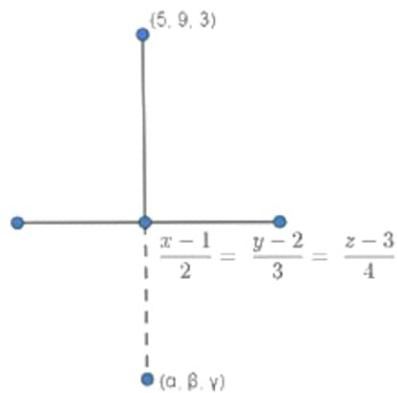
So the foot of the perpendicular is $(2\lambda + 1, 3\lambda + 2, 4\lambda + 3)$

The direction ratios of the perpendicular is

$$(2\lambda + 1 - 5):(3\lambda + 2 - 9):(4\lambda + 3 - 3)$$

$$\Rightarrow (2\lambda - 4):(3\lambda - 7):(4\lambda)$$

Direction ratio of the line is $2 : 3 : 4$



From the direction ratio of the line and the direct ratio of its perpendicular, we have

$$2(2\lambda - 4) + 3(3\lambda - 7) + 4(4\lambda) = 0$$

$$\Rightarrow 4\lambda - 8 + 9\lambda - 21 + 16\lambda = 0$$

$$\Rightarrow 29\lambda = 29$$

$$\Rightarrow \lambda = 1$$

Therefore, the foot of the perpendicular is $(3, 5, 7)$

The foot of the perpendicular is the mid-point of the line joining (5, 9, 3) and (α, β, γ)

Therefore, we have

$$\frac{\alpha+5}{2} = 3 \Rightarrow \alpha = 1$$

$$\frac{\beta+9}{2} = 5 \Rightarrow \beta = 1$$

$$\frac{\gamma+3}{2} = 7 \Rightarrow \gamma = 11$$

Therefore, the image is (1, 1, 11)

OR

We have, $\vec{AB} = 3\hat{i} - \hat{j} + \hat{k}$ and $\vec{CD} = -3\hat{i} + 2\hat{j} + 4\hat{k}$

Also, the position vectors of A and C are $6\hat{i} + 7\hat{j} + 4\hat{k}$ and $-9\hat{j} + 2\hat{k}$, respectively. Since, \vec{PQ} is perpendicular to both \vec{AB} and \vec{CD} . So, P and Q will be foot of perpendicular to both the lines through A and C.

Now, equation of the line through A and parallel to the vector \vec{AB} is,

$$\vec{r} = (6\hat{i} + 7\hat{j} + 4\hat{k}) + \lambda(3\hat{i} - \hat{j} + \hat{k})$$

And the line through C and parallel to the vector \vec{CD} is given by

$$\vec{r} = -9\hat{j} + 2\hat{k} + \mu(-3\hat{i} + 2\hat{j} + 4\hat{k}) \dots \text{(i)}$$

$$\text{Let } \vec{r} = (6\hat{i} + 7\hat{j} + 4\hat{k}) + \lambda(3\hat{i} - \hat{j} + \hat{k})$$

$$\text{and } \vec{r} = -9\hat{j} + 2\hat{k} + \mu(-3\hat{i} + 2\hat{j} + 4\hat{k}) \dots \text{(ii)}$$

Let $P(6 + 3\lambda, 7 - \lambda, 4 + \lambda)$ is any point on the first line and Q be any point on second line is given by $(-3\mu, -9 + 2\mu, 2 + 4\mu)$.

$$\begin{aligned} \therefore \vec{PQ} &= (-3\mu - 6 - 3\lambda)\hat{i} + (-9 + 2\mu - 7 + \lambda)\hat{j} + (2 + 4\mu - 4 - \lambda)\hat{k} \\ &= (-3\mu - 6 - 3\lambda)\hat{i} + (2\mu + \lambda - 16)\hat{j} + (4\mu - \lambda - 2)\hat{k} \end{aligned}$$

If \vec{PQ} is perpendicular to the first line, then

$$3(-3\mu - 6 - 3\lambda) - (2\mu + \lambda - 16) + (4\mu - \lambda - 2) = 0$$

$$\Rightarrow -9\mu - 18 - 9\lambda - 2\mu - \lambda + 16 + 4\mu - \lambda - 2 = 0$$

$$\Rightarrow -7\mu - 11\lambda - 4 = 0 \dots \text{(iii)}$$

If \vec{PQ} is perpendicular to the second line, then

$$-3(-3\mu - 6 - 3\lambda) + (2\mu + \lambda - 16) + (4\mu - \lambda + 2) = 0$$

$$\Rightarrow 9\mu + 18 + 9\lambda + 4\mu + 2\lambda - 32 + 16\mu - 4\lambda - 8 = 0$$

$$\Rightarrow 29\mu + 7\lambda - 22 = 0 \dots \text{(iv)}$$

On solving Eqs. (iii) and (iv), we get

$$-49\mu - 77\lambda - 28 = 0$$

$$\Rightarrow 319\mu + 77\lambda - 242 = 0$$

$$\Rightarrow 270\mu - 270 = 0$$

$$\Rightarrow \mu = 1$$

Using μ in Eq. (iii), we get

$$-7(1) = -11\lambda - 4 = 0$$

$$\Rightarrow -7 - 11\lambda - 4 = 0$$

$$\Rightarrow -11 - 11\lambda = 0$$

$$\Rightarrow \lambda = -1$$

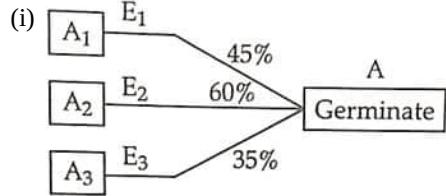
$$\begin{aligned} \therefore \vec{PQ} &= [-3(1) - 6 - 3(-1)]\hat{i} + [2(1) + (-1) - 16]\hat{j} + [4(1) - (-1) - 2]\hat{k} \\ &= -6\hat{i} - 15\hat{j} + 3\hat{k} \end{aligned}$$

Section E

36. Read the text carefully and answer the questions:

A shopkeeper sells three types of flower seeds A_1, A_2, A_3 . They are sold in the form of a mixture, where the proportions of these seeds are $4 : 4 : 2$ respectively. The germination rates of the three types of seeds are 45%, 60% and 35% respectively.

Based on the above information:



Here, $P(E_1) = \frac{4}{10}$, $P(E_2) = \frac{4}{10}$, $P(E_3) = \frac{2}{10}$

$$P\left(\frac{A}{E_1}\right) = \frac{45}{100}, P\left(\frac{A}{E_2}\right) = \frac{60}{100}, P\left(\frac{A}{E_3}\right) = \frac{35}{100}$$

$$\begin{aligned} \therefore P(A) &= P(E_1) \cdot P\left(\frac{A}{E_1}\right) + P(E_2) \cdot P\left(\frac{A}{E_2}\right) + P(E_3) \cdot P\left(\frac{A}{E_3}\right) \\ &= \frac{4}{10} \times \frac{45}{100} + \frac{4}{10} \times \frac{60}{100} + \frac{2}{10} \times \frac{35}{100} \\ &= \frac{180}{1000} + \frac{240}{1000} + \frac{70}{100} \\ &= \frac{490}{1000} = 4.9 \end{aligned}$$

(ii)

$$\text{Required probability} = P\left(\frac{E_2}{A}\right)$$

$$\begin{aligned} &P(E_2) \cdot P\left(\frac{A}{E_2}\right) \\ &= \frac{P(A)}{\frac{4}{10} \times \frac{60}{100}} \\ &= \frac{\frac{490}{1000}}{\frac{240}{1000}} \\ &= \frac{240}{490} = \frac{24}{49} \end{aligned}$$

(iii) Let,

E_1 = Event for getting an even number on die and

E_2 = Event that a spade card is selected

$$\begin{aligned} \therefore P(E_1) &= \frac{3}{6} \\ &= \frac{1}{2} \end{aligned}$$

$$\text{and } P(E_2) = \frac{13}{52} = \frac{1}{4}$$

$$\text{Then, } P(E_1 \cap E_2) = P(E_1) \cdot P(E_2)$$

$$= \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8}$$

OR

$$P(A) + P(B) - P(A \text{ and } B) = P(A)$$

$$\Rightarrow P(A) + P(B) - P(A \cap B) = P(A)$$

$$\Rightarrow P(B) - P(A \cap B) = 0$$

$$\Rightarrow P(A \cap B) = P(B)$$

$$\therefore P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$= \frac{P(B)}{P(B)} \\ = 1$$

37. Read the text carefully and answer the questions:

Renu purchased an air plant holder which is in the shape of a tetrahedron.

Let A, B, C and D are the coordinates of the air plant holder where $A \equiv (1, 1, 1)$, $B \equiv (2, 1, 3)$, $C \equiv (3, 2, 2)$ and $D \equiv (3, 3, 4)$.

(i) Position vector of \overrightarrow{AB}

$$= (2-1)\hat{i} + (1-1)\hat{j} + (3-1)\hat{k} = \hat{i} + 2\hat{k}$$

(ii) Position vector of \overrightarrow{AD}

$$= (3-1)\hat{i} + (3-1)\hat{j} + (4-1)\hat{k} = 2\hat{i} + 2\hat{j} + 3\hat{k}$$

(iii) Area of $\triangle ABC = \frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}|$

$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 0 & 2 \\ 2 & 1 & 1 \end{vmatrix} = \hat{i}(0-2) - \hat{j}(1-4) + \hat{k}(1-0)$$

$$= -2\hat{i} + 3\hat{j} + \hat{k}$$

$$\Rightarrow |\overrightarrow{AB} \times \overrightarrow{AC}| = \sqrt{(-2)^2 + 3^2 + 1^2}$$

$$= \sqrt{4 + 9 + 1} = \sqrt{14}$$

$$\therefore \text{Area of } \triangle ABC = \frac{1}{2} \sqrt{14} \text{ sq. units}$$

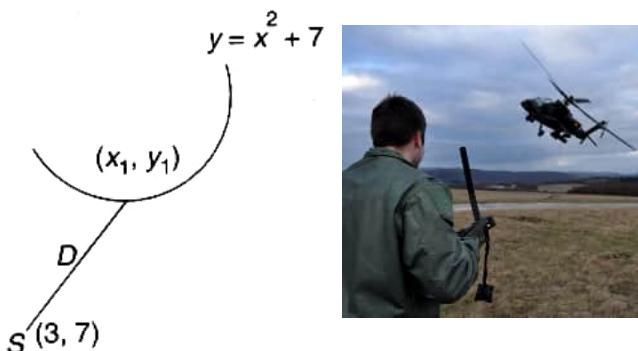
OR

$$\text{Unit vector along } \overrightarrow{AD} = \frac{\overrightarrow{AD}}{|\overrightarrow{AD}|}$$

$$= \frac{2\hat{i} + 2\hat{j} + 3\hat{k}}{\sqrt{2^2 + 2^2 + 3^2}} = \frac{2\hat{i} + 2\hat{j} + 3\hat{k}}{\sqrt{4+4+9}} = \frac{1}{\sqrt{17}} (2\hat{i} + 2\hat{j} + 3\hat{k})$$

38. Read the text carefully and answer the questions:

An Apache helicopter of the enemy is flying along the curve given by $y = x^2 + 7$. A soldier, placed at $(3, 7)$ want to shoot down the helicopter when it is nearest to him.



(i) $P(x_1, y_1)$ is on the curve $y = x^2 + 7 \Rightarrow y_1 = x_1^2 + 7$

Distance from $P(x_1, x_1^2 + 7)$ and $(3, 7)$

$$D = \sqrt{(x_1 - 3)^2 + (x_1^2 + 7 - 7)^2}$$

$$\Rightarrow \sqrt{(x_1 - 3)^2 + (x_1^2)^2}$$

$$\Rightarrow D = \sqrt{x_1^4 + x_1^2 - 6x_1 + 9}$$

$$(ii) D = \sqrt{x_1^4 + x_1^2 - 6x_1 + 9}$$

$$D' = x_1^4 + x_1^2 - 6x_1 + 9$$

$$\frac{dD'}{dx} = 4x_1^3 + 2x_1 - 6 = 0$$

$$\frac{dD'}{dx} = 2x_1^3 + x_1 - 3 = 0$$

$$\Rightarrow (x_1 - 1)(2x_1^2 + 2x_1 + 3) = 0$$

$x_1 = 1$ and $2x_1^2 + 2x_1 + 3 = 0$ gives no real roots

The critical point is (1, 8).