

Series : YWX5Z/5

SET ~ 1

रोल नं.

Roll No.

--	--	--	--	--	--	--

प्रश्न-पत्र कोड
Q.P. Code

55/5/1

परीक्षार्थी प्रश्न-पत्र कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Q.P. Code on the title page of the answer-book.

भौतिक विज्ञान (सैद्धान्तिक)
PHYSICS (Theory)

निर्धारित समय : 3 घण्टे

Time allowed : 3 hours

अधिकतम अंक : 70

Maximum Marks : 70

नोट / NOTE

#

(I) कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 27 हैं।
Please check that this question paper contains 27 printed pages.

(II) प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए प्रश्न-पत्र कोड को परीक्षार्थी उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।
Q.P. Code given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.

(III) कृपया जाँच कर लें कि इस प्रश्न-पत्र में 33 प्रश्न हैं।
Please check that this question paper contains 33 questions.

(IV) कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, उत्तर-पुस्तिका में यथा स्थान पर प्रश्न का क्रमांक अवश्य लिखें।
Please write down the Serial Number of the question in the answer-book at the given place before attempting it.

(V) इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है। प्रश्न-पत्र का वितरण पर्वाह में 10.15 बजे किया जाएगा। 10.15 बजे से 10.30 बजे तक परीक्षार्थी केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे।
15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the candidates will read the question paper only and will not write any answer on the answer-book during this period.

सामान्य निर्देश :

निम्नलिखित निर्देशों को ध्यानपूर्वक पढ़िए और उनका पालन कीजिए :

- (i) इस प्रश्न-पत्र में **33** प्रश्न हैं। सभी प्रश्न अनिवार्य हैं।
- (ii) यह प्रश्न-पत्र पाँच खण्डों में विभाजित है – खण्ड क, ख, ग, घ एवं ड।
- (iii) खण्ड क में प्रश्न संख्या **1** से **16** तक बहुविकल्पीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न **1** अंक का है।
- (iv) खण्ड ख में प्रश्न संख्या **17** से **21** तक अति लघु-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न **2** अंकों का है।
- (v) खण्ड ग में प्रश्न संख्या **22** से **28** तक लघु-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न **3** अंकों का है।
- (vi) खण्ड घ में प्रश्न संख्या **29** तथा **30** केस अध्ययन-आधारित प्रश्न हैं। प्रत्येक प्रश्न **4** अंकों का है।
- (vii) खण्ड ड में प्रश्न संख्या **31** से **33** तक दीर्घ-उत्तरीय प्रकार के प्रश्न हैं। प्रत्येक प्रश्न **5** अंकों का है।
- (viii) प्रश्न-पत्र में समग्र विकल्प नहीं दिया गया है। यद्यपि, खण्ड क के अतिरिक्त अन्य खण्डों के कुछ प्रश्नों में आंतरिक विकल्प का चयन दिया गया है।
- (ix) ध्यान दें कि दृष्टिबाधित परीक्षार्थियों के लिए एक अलग प्रश्न-पत्र है।
- (x) कैल्कुलेटर का उपयोग वर्जित है।

जहाँ आवश्यक हो, आप निम्नलिखित भौतिक नियतांकों के मानों का उपयोग कर सकते हैं :

$$c = 3 \times 10^8 \text{ m/s}$$

$$h = 6.63 \times 10^{-34} \text{ Js}$$

$$e = 1.6 \times 10^{-19} \text{ C}$$

$$\mu_0 = 4\pi \times 10^{-7} \text{ T m A}^{-1}$$

$$\epsilon_0 = 8.854 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$$

$$\frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \text{ N m}^2 \text{ C}^{-2}$$

$$\text{इलेक्ट्रॉन का द्रव्यमान (m_e) = } 9.1 \times 10^{-31} \text{ kg}$$

$$\text{न्यूट्रॉन का द्रव्यमान = } 1.675 \times 10^{-27} \text{ kg}$$

$$\text{प्रोटॉन का द्रव्यमान = } 1.673 \times 10^{-27} \text{ kg}$$

$$\text{आवोगाद्रो संख्या = } 6.023 \times 10^{23} \text{ प्रति ग्राम मोल}$$

$$\text{बोल्ट्जमान नियतांक = } 1.38 \times 10^{-23} \text{ JK}^{-1}$$

#

General Instructions :

Read the following instructions carefully and follow them :

- (i) This question paper contains **33** questions. **All** questions are **compulsory**.
- (ii) This question paper is divided into **five** sections – **Sections A, B, C, D and E**.
- (iii) In **Section A** – Questions no. **1** to **16** are **Multiple Choice** type questions. Each question carries **1** mark.
- (iv) In **Section B** – Questions no. **17** to **21** are **Very Short Answer** type questions. Each question carries **2** marks.
- (v) In **Section C** – Questions no. **22** to **28** are **Short Answer** type questions. Each question carries **3** marks.
- (vi) In **Section D** – Questions no. **29** and **30** are **case study-based** questions. Each question carries **4** marks.
- (vii) In **Section E** – Questions no. **31** to **33** are **Long Answer** type questions. Each question carries **5** marks.
- (viii) There is no overall choice given in the question paper. However, an internal choice has been provided in few questions in all the Sections except Section A.
- (ix) Kindly note that there is a separate question paper for Visually Impaired candidates.
- (x) Use of calculators is **not** allowed.

You may use the following values of physical constants wherever necessary :

$$c = 3 \times 10^8 \text{ m/s}$$

$$h = 6.63 \times 10^{-34} \text{ Js}$$

$$e = 1.6 \times 10^{-19} \text{ C}$$

$$\mu_0 = 4\pi \times 10^{-7} \text{ T m A}^{-1}$$

$$\epsilon_0 = 8.854 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$$

$$\frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \text{ N m}^2 \text{ C}^{-2}$$

$$\text{Mass of electron (m}_e\text{)} = 9.1 \times 10^{-31} \text{ kg}$$

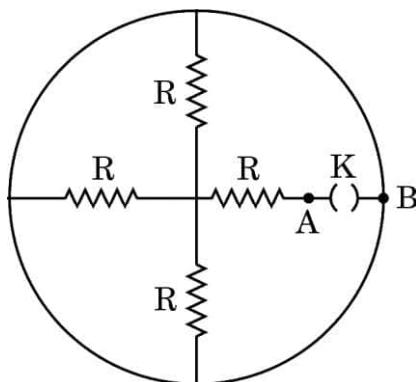
$$\text{Mass of neutron} = 1.675 \times 10^{-27} \text{ kg}$$

$$\text{Mass of proton} = 1.673 \times 10^{-27} \text{ kg}$$

$$\text{Avogadro's number} = 6.023 \times 10^{23} \text{ per gram mole}$$

$$\text{Boltzmann constant} = 1.38 \times 10^{-23} \text{ JK}^{-1}$$

खण्ड क


1. धारिता C के किसी समान्तर पट्टिका संधारित्र की पट्टिकाओं के बीच किसी धातु की चादर को रख दिया गया है। यदि यह चादर पट्टिकाओं के बीच के कुछ स्थान को अंशतः घेरती है, तो इस संधारित्र की धारिता :

(A) C ही रहेगी (B) C से अधिक हो जाएगी
(C) C से कम हो जाएगी (D) शून्य हो जाएगी

2. किसी प्रदेश में किसी बिन्दु पर विद्युत-क्षेत्र को $\vec{E} = \alpha \frac{\vec{r}}{|\vec{r}|^3}$ द्वारा दर्शाया गया है, जहाँ α कोई स्थिरांक है तथा r इस बिन्दु की मूल-बिन्दु से दूरी है। इस बिन्दु पर विभव का परिमाण है :

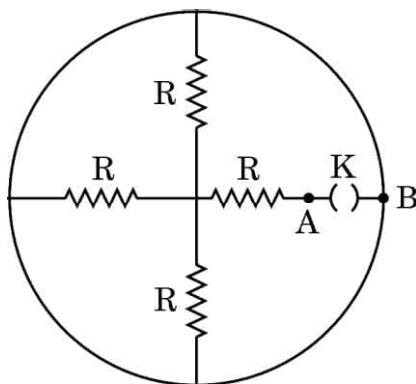
(A) $\frac{\alpha}{r}$ (B) $\frac{\alpha r^2}{2}$
(C) $\frac{\alpha}{2r^2}$ (D) $-\frac{\alpha}{r}$

3. आरेख में दर्शाए अनुसार चार प्रतिरोधक जिनमें प्रत्येक का प्रतिरोध R है तथा एक कुन्जी K संयोजित हैं। जब कुन्जी K खुली है तब बिन्दु A और B के बीच तुल्य प्रतिरोध होगा :

(A) $4R$ (B) ∞
(C) $\frac{R}{4}$ (D) $\frac{4R}{3}$

4. कोई आवेशित कण जब 10 kV विभवान्तर द्वारा विराम से त्वरित किया जाता है, तो 10^6 ms^{-1} की चाल प्राप्त कर लेता है। यह कण 0.4 T के चुम्बकीय क्षेत्र के प्रदेश से इस प्रकार से गुजरता है कि $\vec{v} \perp \vec{B}$ है। इस कण के द्वारा चले गए वृत्ताकार पथ की त्रिज्या है :

(A) 2.5 cm (B) 5 cm
(C) 8 cm (D) 10 cm



SECTION A

1. A metal sheet is inserted between the plates of a parallel plate capacitor of capacitance C. If the sheet partly occupies the space between the plates, the capacitance :
 (A) remains C (B) becomes greater than C
 (C) becomes less than C (D) becomes zero

2. The electric field at a point in a region is given by $\vec{E} = \alpha \frac{\vec{r}}{|r|^3}$, where α is a constant and r is the distance of the point from the origin. The magnitude of potential of the point is :
 (A) $\frac{\alpha}{r}$ (B) $\frac{\alpha r^2}{2}$
 (C) $\frac{\alpha}{2r^2}$ (D) $-\frac{\alpha}{r}$

3. Four resistors, each of resistance R and a key K are connected as shown in the figure. The equivalent resistance between points A and B when key K is open, will be :

(A) $4R$ (B) ∞
 (C) $\frac{R}{4}$ (D) $\frac{4R}{3}$

4. A charged particle gains a speed of 10^6 ms^{-1} , when accelerated from rest through a potential difference 10 kV. It enters a region of magnetic field of 0.4 T such that $\vec{v} \perp \vec{B}$. The radius of circular path described by it is :
 (A) 2.5 cm (B) 5 cm
 (C) 8 cm (D) 10 cm

5. 14 cm त्रिज्या के किसी वृत्ताकार पाश में $\left(\frac{10}{\pi}\right)A$ की धारा प्रवाहित हो रही है। इस पाश से संबद्ध द्वित्रिव आधूर्ण का मान है :

(A) 0.019 Am^2 (B) 0.14 Am^2
 (C) 0.196 Am^2 (D) 0.615 Am^2

6. किसी कुण्डली से संबद्ध चुम्बकीय फ्लक्स समय t के साथ $\phi = (8t^2 + 5t + 7)$ के रूप में परिवर्तित हो रहा है, जहाँ t सेकण्ड में तथा ϕ को Wb में लिया गया है। $t = 4 \text{ s}$ पर इस कुण्डली में प्रेरित वि.वा.बल (emf) का मान है :

(A) 32 V (B) 37 V
 (C) 64 V (D) 69 V

7. सूर्य से आने वाली, निम्नलिखित में से कौन-सी किरणें पृथ्वी के ताप के संपोषण में महत्वपूर्ण भूमिका निभाती हैं ?

(A) अवरक्त किरणें (B) γ किरणें
 (C) UV किरणें (D) दृश्य प्रकाश किरणें

8. $(\mu\epsilon)^{-1}$ की विमाएँ, जहाँ ϵ एक माध्यम की विद्युतशीलता है और μ पारगम्यता है, हैं :

(A) $[M^0 L^1 T^{-1}]$ (B) $[M^0 L^2 T^{-2}]$
 (C) $[M^1 L^2 T^{-2}]$ (D) $[M^1 L^{-1} T^1]$

9. निम्नलिखित में से कौन-सी विद्युत-चुम्बकीय तरंगों के फ्रोटॉनों का अधिकतम संवेग होता है ?

(A) X-किरणें (B) AM रेडियो तरंगें
 (C) सूक्ष्मतरंगें (D) TV तरंगें

10. किसी संयुक्त सूक्ष्मदर्शी के अभिदृश्यक और नेत्रिका की फोकस दूरी क्रमशः f_0 और f_e है। किसी सूक्ष्म बिम्ब का अधिक आवर्धन प्राप्त करने के लिए सूक्ष्मदर्शी में होना चाहिए :

(A) f_0 और f_e कम, और $f_e > f_0$ (B) f_0 और f_e कम, और $f_0 > f_e$
 (C) f_0 और f_e अधिक, और $f_e > f_0$ (D) f_0 और f_e अधिक, और $f_0 > f_e$

#

5. A current of $\left(\frac{10}{\pi}\right)$ A is maintained in a circular loop of radius 14 cm. The value of dipole moment associated with the loop is :

(A) 0.019 Am^2 (B) 0.14 Am^2
(C) 0.196 Am^2 (D) 0.615 Am^2

6. The magnetic flux linked with a coil changes with time t as $\phi = (8t^2 + 5t + 7)$, where t is in seconds and ϕ is in Wb. The value of emf induced in the coil at $t = 4 \text{ s}$ is :

(A) 32 V (B) 37 V
(C) 64 V (D) 69 V

7. Which of the following rays coming from the Sun plays an important role in maintaining the Earth's warmth ?

(A) Infrared rays (B) γ rays
(C) UV rays (D) Visible light rays

8. The dimensions of $(\mu\epsilon)^{-1}$, where ϵ is permittivity and μ is permeability of a medium, are :

(A) $[\text{M}^0 \text{L}^1 \text{T}^{-1}]$ (B) $[\text{M}^0 \text{L}^2 \text{T}^{-2}]$
(C) $[\text{M}^1 \text{L}^2 \text{T}^{-2}]$ (D) $[\text{M}^1 \text{L}^{-1} \text{T}^1]$

9. Which of the following electromagnetic waves has photons of largest momentum ?

(A) X-rays (B) AM radio waves
(C) Microwaves (D) TV waves

10. A compound microscope has an objective and an eyepiece of focal lengths f_o and f_e , respectively. To obtain a large magnification of a small object, the microscope should have :

(A) f_o and f_e small, and $f_e > f_o$ (B) f_o and f_e small, and $f_o > f_e$
(C) f_o and f_e large, and $f_e > f_o$ (D) f_o and f_e large, and $f_o > f_e$

11. दो कलासंबद्ध प्रकाश तरंगें जिनमें प्रत्येक का आयाम 'a' है, अध्यारोपण करके परदे पर व्यतिकरण पैटर्न बनाते हैं। परदे पर दिखाई देने वाली प्रकाश की तीव्रता का विचरण निम्नलिखित में से किसके बीच होता है?

(A) 0 और $2a^2$ (B) 0 और $4a^2$
(C) a^2 और $2a^2$ (D) $2a^2$ और $4a^2$

12. किसी ऐल्फा कण की गतिज ऊर्जा प्रोटॉन की गतिज ऊर्जा की चार गुनी है। इनसे संबद्ध दे ब्रॉग्ली तरंगदैधर्यों का अनुपात $\left(\frac{\lambda_a}{\lambda_p}\right)$ होगा :

(A) $\frac{1}{16}$ (B) $\frac{1}{8}$
(C) $\frac{1}{4}$ (D) $\frac{1}{2}$

प्रश्न संख्या 13 से 16 अभिकथन (A) और कारण (R) प्रकार के प्रश्न हैं। दो कथन दिए गए हैं — जिनमें एक को अभिकथन (A) तथा दूसरे को कारण (R) द्वारा अंकित किया गया है। सही उत्तर नीचे दिए गए कोडों (A), (B), (C) और (D) में से चुनकर दीजिए।

(A) अभिकथन (A) और कारण (R) दोनों सही हैं और कारण (R), अभिकथन (A) की सही व्याख्या करता है।
(B) अभिकथन (A) और कारण (R) दोनों सही हैं, परन्तु कारण (R), अभिकथन (A) की सही व्याख्या नहीं करता है।
(C) अभिकथन (A) सही है, परन्तु कारण (R) गलत है।
(D) अभिकथन (A) और कारण (R) दोनों गलत हैं।

13. अभिकथन (A) : p-प्रकार के Si में अशुद्धियाँ पंचसंयोजक परमाणु नहीं हैं।
कारण (R) : p-प्रकार के अर्धचालकों में संयोजकता बैण्ड में विवर घनत्व लगभग ग्राही घनत्व के बराबर होता है।

14. अभिकथन (A) : किसी नाभिक के निर्माण के समय उत्पन्न द्रव्यमान क्षति नाभिक की बंधन ऊर्जा की स्रोत होती है।
कारण (R) : सभी नाभिकों के लिए, बंधन ऊर्जा प्रति न्यूक्लिओन के मान में द्रव्यमान संख्या के साथ वृद्धि होती है।

11. Two coherent light waves, each having amplitude 'a', superpose to produce an interference pattern on a screen. The intensity of light as seen on the screen varies between :

(A) 0 and $2a^2$ (B) 0 and $4a^2$
(C) a^2 and $2a^2$ (D) $2a^2$ and $4a^2$

12. The kinetic energy of an alpha particle is four times the kinetic energy of a proton. The ratio $\left(\frac{\lambda_a}{\lambda_p}\right)$ of de Broglie wavelengths associated with them will be :

(A) $\frac{1}{16}$ (B) $\frac{1}{8}$
(C) $\frac{1}{4}$ (D) $\frac{1}{2}$

Questions number 13 to 16 are Assertion (A) and Reason (R) type questions. Two statements are given — one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer from the codes (A), (B), (C) and (D) as given below.

(A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).
(B) Both Assertion (A) and Reason (R) are true, but Reason (R) is **not** the correct explanation of the Assertion (A).
(C) Assertion (A) is true, but Reason (R) is false.
(D) Both Assertion (A) and Reason (R) are false.

13. *Assertion (A) : The impurities in p-type Si are not pentavalent atoms.*
Reason (R) : The hole density in valance band in p-type semiconductor is almost equal to the acceptor density.

14. *Assertion (A) : During formation of a nucleus, the mass defect produced is the source of the binding energy of the nucleus.*
Reason (R) : For all nuclei, the value of binding energy per nucleon increases with mass number.

#

15. अभिकथन (A) : हाइड्रोजन परमाणु के स्पेक्ट्रम में बामर श्रेणी तब बनती है जब इलेक्ट्रॉन उच्च ऊर्जा अवस्था से निम्नतम अवस्था में कूदान करता है।

कारण (R) : हाइड्रोजन परमाणु के बोर मॉडल में, इलेक्ट्रॉन केवल क्रमागत कक्षाओं के बीच कूदान कर सकता है।

16. अभिकथन (A) : रदरफोर्ड के ऐल्फा कण प्रकीर्णन प्रयोग में, प्रकीर्णन कोण π पर केवल कुछ ऐल्फा कणों की उपस्थिति ने रदरफोर्ड को नाभिक की खोज की ओर निर्देशित किया।

कारण (R) : नाभिक का साइज, परमाणु के साइज का लगभग 10^{-5} गुना होता है इसलिए केवल कुछ ऐल्फा कण ही प्रतिक्षिप्त होते हैं।

खण्ड ख

17. किसी दिए गए धातु के लिए देहली आवृत्ति $3.6 \times 10^{14} \text{ Hz}$ है। यदि इस धातु पर $6.8 \times 10^{14} \text{ Hz}$ आवृत्ति के एकवर्णी विकिरण आपतन करते हैं, तो फोटो-इलेक्ट्रॉनों के लिए अंतक विभव ज्ञात कीजिए। 2

18. (क) वायु से पृथक करने वाले $n (< 4)$ अपवर्तनांक के माध्यम से, वक्रता त्रिज्या R के किसी उत्तल पृष्ठ से कोई बिन्दु बिम्ब $R/3$ दूरी पर वायु में स्थित है। बनने वाले प्रतिबिम्ब की प्रकृति और स्थिति ज्ञात कीजिए। 2

अथवा

(ख) यंग के द्विनिरी प्रयोग की प्रायोगिक व्यवस्था में, केंद्रीय उच्चवष्ट की तीव्रता I_0 है। उस बिंदु पर, जहाँ व्यतिकरण करती हुई दो तरंगों के बीच पथान्तर $\lambda/3$ है, तीव्रता परिकलित कीजिए। 2

19. 1000Ω प्रतिरोध का कोई वोल्टमीटर 25 V तक की माप ले सकता है। आप इसे 250 V तक का पाठ्यांक ले सकने के लिए किस प्रकार परिवर्तित करेंगे? 2

20. जब कोई न्यूट्रॉन $^{235}_{92}\text{U}$ से संघट्ट करता है, तो नाभिक से विखण्डन उत्पाद के रूप में $^{140}_{54}\text{Xe}$ तथा $^{94}_{38}\text{Sr}$ प्राप्त होते हैं और दो न्यूट्रॉन उत्सर्जित होते हैं। इस प्रक्रिया में द्रव्यमान क्षति तथा मुक्त ऊर्जा (MeV में) परिकलित कीजिए। दिया गया है :

$$m\left(^{235}_{92}\text{U}\right) = 235.04393 \text{ u}, \quad m\left(^{140}_{54}\text{Xe}\right) = 139.92164 \text{ u}$$

$$m\left(^{94}_{38}\text{Sr}\right) = 93.91536 \text{ u}, \quad {}_0^1\text{n} = 1.00866 \text{ u}$$

$$1 \text{ u} = 931 \text{ MeV}/c^2$$

#

15. *Assertion (A)* : The Balmer series in hydrogen atom spectrum is formed when the electron jumps from higher energy state to the ground state.

Reason (R) : In Bohr's model of hydrogen atom, the electron can jump between successive orbits only.

16. *Assertion (A)* : In Rutherford's alpha particle scattering experiment, the presence of only few alpha particles at angle of scattering π led him to the discovery of nucleus.

Reason (R) : The size of nucleus is approximately 10^{-5} times the size of an atom and therefore only few alpha particles are rebounded.

SECTION B

17. The threshold frequency for a given metal is 3.6×10^{14} Hz. If monochromatic radiations of frequency 6.8×10^{14} Hz are incident on this metal, find the cut-off potential for the photoelectrons. 2

18. (a) A point object is placed in air at a distance $R/3$ in front of a convex surface of radius of curvature R , separating air from a medium of refractive index $n (< 4)$. Find the nature and position of the image formed. 2

OR

(b) In Young's double slit experimental set-up, the intensity of the central maximum is I_0 . Calculate the intensity at a point where the path difference between two interfering waves is $\lambda/3$. 2

19. A voltmeter of resistance 1000Ω can measure up to 25 V. How will you convert it so that it can read up to 250 V ? 2

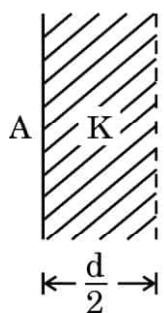
20. When a neutron collides with $^{235}_{92}\text{U}$, the nucleus gives $^{140}_{54}\text{Xe}$ and $^{94}_{38}\text{Sr}$ as fission products and two neutrons are ejected. Calculate the mass defect and the energy released (in MeV) in the process. Given : 2

$$m\left(^{235}_{92}\text{U}\right) = 235.04393 \text{ u}, \quad m\left(^{140}_{54}\text{Xe}\right) = 139.92164 \text{ u}$$

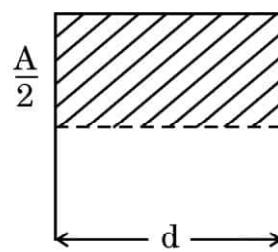
$$m\left(^{94}_{38}\text{Sr}\right) = 93.91536 \text{ u}, \quad {}_0^1\text{n} = 1.00866 \text{ u}$$

$$1 \text{ u} = 931 \text{ MeV/c}^2$$

#


21. किसी तार का 25°C पर प्रतिरोध $10\cdot0 \Omega$ है। 125°C पर गर्म करने पर इसका प्रतिरोध $10\cdot5 \Omega$ हो जाता है। (i) तार के प्रतिरोध का ताप गुणांक, तथा (ii) 425°C पर तार का प्रतिरोध ज्ञात कीजिए। 2

खण्ड ग


22. (क) $T = 0 \text{ K}$ पर चालकों, अर्धचालकों और विद्युतरोधियों के लिए ऊर्जा-बैण्ड आरेख खींचिए। किसी अर्धचालक में कक्ष-ताप पर इलेक्ट्रॉन-विवर युगल किस प्रकार निर्मित होता है ?

(ख) आवर्त सारणी में कार्बन और सिलिकॉन दोनों ही ग्रुप IV के सदस्य हैं और दोनों की जालक संरचना समान है। कार्बन विद्युतरोधी है जबकि सिलिकॉन अर्धचालक है। व्याख्या कीजिए। 3

23. किसी समान्तर पट्टिका संधारित्र की पट्टिकाओं का क्षेत्रफल A तथा पट्टिका पृथकन d है। इस संधारित्र की दो पट्टिकाओं के बीच के आधे स्थान में, आरेख में दर्शाए अनुसार, दो ढंगों से परावैद्युतांक K का कोई पदार्थ भरा गया है।

(a)

(b)

इन दोनों प्रकरणों में संधारित्र की धारिताओं के मान ज्ञात कीजिए। 3

24. यंग के द्विसिरी प्रयोग में, दो स्लिरियों का पृथकन $1\cdot0 \text{ mm}$ तथा परदे की स्लिरियों से दूरी $1\cdot0 \text{ m}$ है। व्यतिकरण फ्रिंजें प्राप्त करने के लिए दो तरंगदैर्घ्यों 500 nm और 600 nm के बने प्रकाश पुन्ज का उपयोग किया गया है। परिकलित कीजिए :

(क) दोनों तरंगदैर्घ्यों के प्रथम उच्चिष्ठों के बीच की दूरी।

(ख) केन्द्रीय उच्चिष्ठ से उस बिंदु की न्यूनतम दूरी, जहाँ पर दोनों तरंगदैर्घ्यों की चमकीली फ्रिंजें संपात करती हैं।

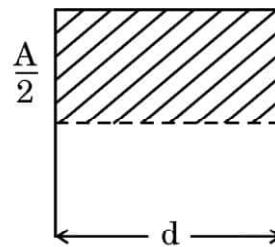
#

21. The resistance of a wire at 25°C is $10.0\ \Omega$. When heated to 125°C , its resistance becomes $10.5\ \Omega$. Find (i) the temperature coefficient of resistance of the wire, and (ii) the resistance of the wire at 425°C .

2

SECTION C

22. (a) Draw the energy-band diagrams for conductors, semiconductors and insulators at $T = 0\ \text{K}$. How is an electron-hole pair formed in a semiconductor at room temperature ?


(b) Carbon and silicon both, are members of IV group of periodic table and have the same lattice structure. Carbon is an insulator whereas silicon is a semiconductor. Explain.

3

23. A parallel plate capacitor has plate area A and plate separation d . Half of the space between the plates is filled with a material of dielectric constant K in two ways as shown in the figure.

(a)

(b)

Find the values of the capacitance of the capacitors in the two cases.

3

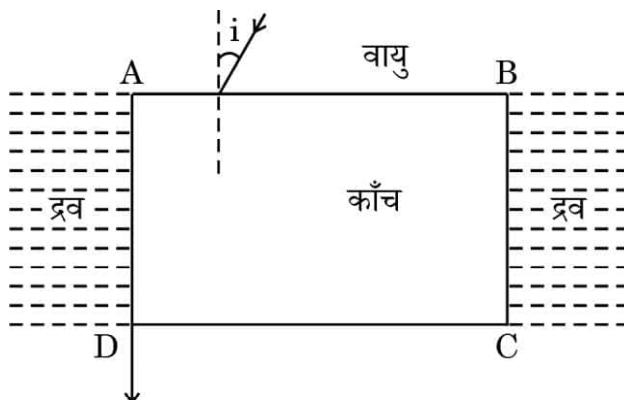
24. In Young's double slit experiment, the separation between the two slits is $1.0\ \text{mm}$ and the screen is $1.0\ \text{m}$ away from the slits. A beam of light consisting of two wavelengths $500\ \text{nm}$ and $600\ \text{nm}$ is used to obtain interference fringes. Calculate :

3

(a) the distance between the first maxima for the two wavelengths.

(b) the least distance from the central maximum, where the bright fringes due to both the wavelengths coincide.

#


25. अर्ध-तरंग और पूर्ण तरंग दिष्टकरण के बीच विभेदन कीजिए। परिपथ आरेख की सहायता से पूर्ण तरंग दिष्टकारी की कार्यविधि की व्याख्या कीजिए। 3

26. द्रव्यमान m और आवेश – e का कोई इलेक्ट्रॉन किसी परमाणु के नाभिक की वामावर्त परिक्रमा कर रहा है।

(क) इस परमाणु के चुम्बकीय द्विध्रुव आघूर्ण (μ) के लिए व्यंजक प्राप्त कीजिए।

(ख) यदि इलेक्ट्रॉन का कोणीय संवेग \vec{L} है, तो यह दर्शाइए कि $\vec{\mu} = -\left(\frac{e}{2m}\right)\vec{L}$ 3

27. आरेख में दर्शाए अनुसार काँच का कोई आयताकार स्लैब ABCD (अपवर्तनांक 1.5) किसी पारदर्शी द्रव (अपवर्तनांक 1.25) से घिरा है। इसके फलक AB पर कोई प्रकाश किरण कोण i पर इस प्रकार आपतन करती है कि यह फलक AD को स्पर्श करते हुए अपवर्तित होती है। कोण i का मान ज्ञात कीजिए। 3

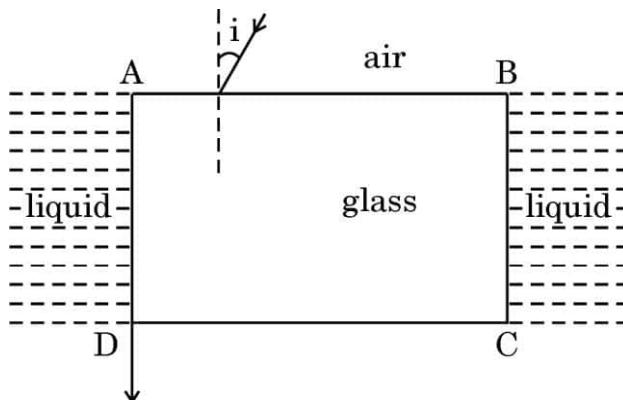
28. (क) दो ठोस धातु की लघु गेंदें A और B जिनकी त्रिज्याएँ क्रमशः R और $2R$ तथा आवेश घनत्व 2σ और 3σ हैं, एक-दूसरे से काफी दूरी पर स्थित हैं। इन दोनों को किसी चालक तार से संयोजित करने के पश्चात A और B के आवेश घनत्व ज्ञात कीजिए। 3

अथवा

#

25. Differentiate between half-wave and full-wave rectification. With the help of a circuit diagram, explain the working of a full-wave rectifier. 3

26. An electron of mass m and charge $-e$ is revolving anticlockwise around the nucleus of an atom.


(a) Obtain the expression for the magnetic dipole moment (μ) of the atom.

(b) If \vec{L} is the angular momentum of electron, show that

$$\vec{\mu} = -\left(\frac{e}{2m}\right)\vec{L}.$$

3

27. A rectangular glass slab ABCD (refractive index 1.5) is surrounded by a transparent liquid (refractive index 1.25) as shown in the figure. A ray of light is incident on face AB at an angle i such that it is refracted out grazing the face AD. Find the value of angle i . 3

28. (a) Two small solid metal balls A and B of radii R and $2R$ having charge densities 2σ and 3σ respectively are kept far apart. Find the charge densities on A and B after they are connected by a conducting wire. 3

OR

(ख) अनन्त लम्बाई के दो सीधे तार '1' और '2', एक-दूसरे के समान्तर और एक-दूसरे से दूरी d पर आरेख में दर्शाए अनुसार स्थित हैं। इन तारों को एकसमान रूप से आवेशित किया गया है और इनके आवेश घनत्व क्रमशः λ और $-\frac{\lambda}{2}$ हैं। तार '1' से उस बिंदु की स्थिति ज्ञात कीजिए जिस पर नेट विद्युत-क्षेत्र शून्य है तथा उस प्रदेश की पहचान कीजिए जिसमें यह बिंदु स्थित है।

3

खण्ड घ

प्रश्न संख्या 29 तथा 30 केस अध्ययन-आधारित प्रश्न हैं। निम्नलिखित अनुच्छेदों को पढ़ कर नीचे दिए गए प्रश्नों के उत्तर दीजिए।

29. गैल्वेनोमीटर एक ऐसा उपकरण है जिसका उपयोग अपने से प्रवाहित होने वाली धारा की दिशा और तीव्रता को दर्शाने के लिए किया जाता है। किसी गैल्वेनोमीटर में चुम्बकीय क्षेत्र में स्थित कोई कुण्डली धारा प्रवाहित किए जाने पर बल-आघूर्ण का अनुभव करती है और इसलिए विक्षेपित हो जाती है। इस उपकरण का नाम इटली के वैज्ञानिक एल. गैल्वानी के नाम पर रखा गया है जिन्होंने 1791 में यह खोज की थी कि विद्युत धारा मृत मेंढक की टाँग में झटका देती है। किसी कुण्डली से जुड़ी कमानी प्रतिकारक बल-आघूर्ण प्रदान करती है।

साम्यावस्था में, विक्षेपक बल-आघूर्ण का संतुलन कमानी के प्रत्यानयन (विरोधी) बल-आघूर्ण द्वारा किया जाता है और हमें नीचे दिया गया संबंध प्राप्त होता है :

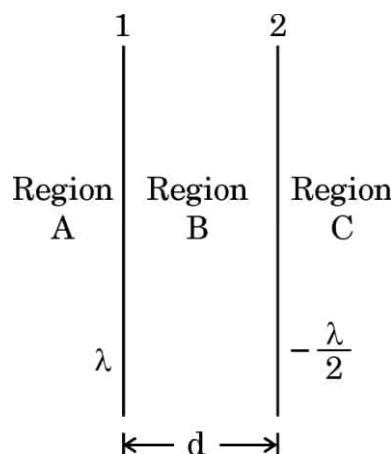
$$NBAI = k\phi$$

जहाँ N = कुण्डली में फेरों की कुल संख्या

A = प्रत्येक फेरे का अनुप्रस्थ-काट क्षेत्रफल

B = त्रिज्य चुम्बकीय क्षेत्र

k = कमानी का ऐंठन नियतांक


ϕ = कुण्डली का कोणीय विक्षेपण

#

(b) Two infinitely long straight wires '1' and '2' are placed d distance apart, parallel to each other, as shown in the figure. They are uniformly charged having charge densities λ and $-\frac{\lambda}{2}$ respectively. Locate the position of the point from wire '1' at which the net electric field is zero and identify the region in which it lies.

3

SECTION D

Questions number **29** and **30** are Case Study-based questions. Read the following paragraphs and answer the questions that follow.

29. A galvanometer is an instrument used to show the direction and strength of the current passing through it. In a galvanometer, a coil placed in a magnetic field experiences a torque and hence gets deflected when a current passes through it. The name is derived from the surname of Italian scientist L. Galvani, who in 1791 discovered that electric current makes a dead frog's leg jerk. A spring attached with the coil provides a counter torque.

In equilibrium, the deflecting torque is balanced by the restoring torque of the spring and we have :

$$NBAI = k\phi$$

where N is the total number of turns in the coil

A is the area of cross-section of each turn

B is the radial magnetic field

k is the torsional constant of the spring

ϕ is the angular deflection of the coil

#

चूंकि गैल्वेनोमीटर में पूर्ण विक्षेपण की धारा (I_g) बहुत कम होती है अतः गैल्वेनोमीटर का उपयोग विद्युत परिपथों में प्रवाहित विद्युत धारा को मापने के लिए नहीं किया जा सकता है। गैल्वेनोमीटर को वांछित परिसर के ऐमीटर में परिवर्तित करने के लिए इसके साथ उचित मान के एक छोटे प्रतिरोध, जिसे शंट कहते हैं, को संयोजित किया जाता है। उच्च प्रतिरोध का उपयोग करके किसी गैल्वेनोमीटर को वोल्टमीटर में भी परिवर्तित किया जा सकता है।

(i) किसी गैल्वेनोमीटर की धारा सुग्राहिता का मान होता है : 1

(A) $\frac{k}{NBA}$	(B) $\frac{NBA}{k}$
(C) $\frac{kBA}{N}$	(D) $\frac{kNB}{A}$

(ii) 6Ω प्रतिरोध का कोई गैल्वेनोमीटर $0.2 A$ धारा के लिए पूर्ण पैमाने पर विक्षेपण दर्शाता है। इस गैल्वेनोमीटर को $(0 - 5 A)$ परिसर के ऐमीटर में परिवर्तित करने के लिए उपयोग किए जाने वाले शंट का मान होता है : 1

(A) 0.25Ω	(B) 0.30Ω
(C) 0.50Ω	(D) 6.0Ω

(iii) प्रकरण (ii) में ऐमीटर के प्रतिरोध का मान होगा : 1

(A) 0.20Ω	(B) 0.24Ω
(C) 6.0Ω	(D) 6.25Ω

(iv) (क) किसी गैल्वेनोमीटर को इसके साथ R_1 प्रतिरोध को संयोजित करके $(0 - V)$ परिसर के वोल्टमीटर में परिवर्तित किया गया है। यदि R_1 को R_2 द्वारा प्रतिस्थापित किया जाता है, तो उसका परिसर $(0 - 2 V)$ हो जाता है। इस गैल्वेनोमीटर का प्रतिरोध है : 1

(A) $(R_2 - 2R_1)$	(B) $(R_2 - R_1)$
(C) $(R_1 + R_2)$	(D) $(R_1 - 2R_2)$

अथवा

(ख) किसी गैल्वेनोमीटर से 5 mA धारा प्रवाहित हो रही है। इसकी कुण्डली में 100 फेरे हैं, जिनमें प्रत्येक की अनुप्रस्थ-काट का क्षेत्रफल 18 cm^2 है तथा यह 0.20 T के चुम्बकीय क्षेत्र में निलंबित है। इस कुण्डली पर कार्यरत विक्षेपक बल-आघूर्ण है : 1

(A) $3.6 \times 10^{-3} \text{ Nm}$	(B) $1.8 \times 10^{-4} \text{ Nm}$
(C) $2.4 \times 10^{-3} \text{ Nm}$	(D) $1.2 \times 10^{-4} \text{ Nm}$

As the current (I_g) which produces full scale deflection in the galvanometer is very small, the galvanometer cannot as such be used to measure current in electric circuits. A small resistance, called shunt, of a suitable value is connected with the galvanometer to convert it into an ammeter of desired range. By using a higher resistance, a galvanometer can also be converted into a voltmeter.

(i) The value of the current sensitivity of a galvanometer is given by : 1

(A) $\frac{k}{NBA}$ (B) $\frac{NBA}{k}$
(C) $\frac{kBA}{N}$ (D) $\frac{kNB}{A}$

(ii) A galvanometer of resistance 6Ω shows full scale deflection for a current of 0.2 A . The value of shunt to be used with this galvanometer to convert it into an ammeter of range $(0 - 5 \text{ A})$ is : 1

(A) 0.25Ω (B) 0.30Ω
(C) 0.50Ω (D) 6.0Ω

(iii) The value of resistance of the ammeter in case (ii) will be : 1

(A) 0.20Ω (B) 0.24Ω
(C) 6.0Ω (D) 6.25Ω

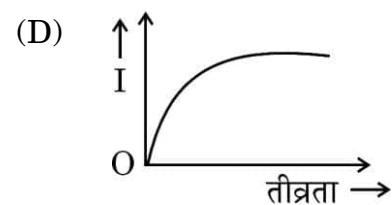
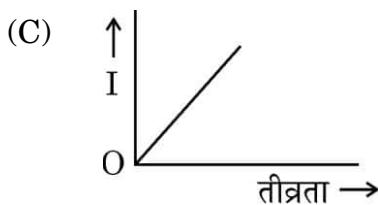
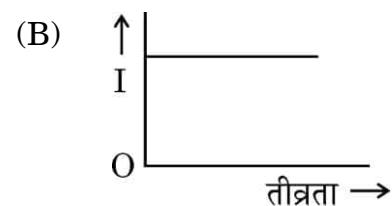
(iv) (a) A galvanometer is converted into a voltmeter of range $(0 - V)$ by connecting with it, a resistance R_1 . If R_1 is replaced by R_2 , the range becomes $(0 - 2 V)$. The resistance of the galvanometer is : 1

(A) $(R_2 - 2R_1)$ (B) $(R_2 - R_1)$
(C) $(R_1 + R_2)$ (D) $(R_1 - 2R_2)$

OR

(b) A current of 5 mA flows through a galvanometer. Its coil has 100 turns, each of area of cross-section 18 cm^2 and is suspended in a magnetic field 0.20 T . The deflecting torque acting on the coil will be : 1

(A) $3.6 \times 10^{-3} \text{ Nm}$ (B) $1.8 \times 10^{-4} \text{ Nm}$
(C) $2.4 \times 10^{-3} \text{ Nm}$ (D) $1.2 \times 10^{-4} \text{ Nm}$

#

30. आइंस्टाइन ने प्लांक के क्वांटम सिद्धान्त जिसमें प्रकाश ऊर्जा के लघु बन्डलों, जिन्हें फोटॉन कहते हैं, के रूप में गमन करती है, के आधार पर प्रकाश-विद्युत प्रभाव की व्याख्या की थी। प्रत्येक फोटॉन की ऊर्जा $h\nu$ होती है, जहाँ ν आपतित प्रकाश की आवृत्ति तथा h प्लांक नियतांक है। किसी प्रकाश पुंज में फोटॉनों की संख्या आपतित प्रकाश की तीव्रता निर्धारित करती है। किसी धातु के पृष्ठ पर आपतित कोई फोटॉन अपनी कुल ऊर्जा $h\nu$ को उस धातु के किसी मुक्त इलेक्ट्रॉन को स्थानान्तरित कर देता है। इस ऊर्जा का कुछ भाग धातु से इलेक्ट्रॉन को उत्सर्जित करने में प्रयुक्त होता है, जिसे इसका कार्यफलन कहते हैं। ऊर्जा के शेष भाग को उत्सर्जित इलेक्ट्रॉन अपनी गतिज ऊर्जा के रूप में वहन करता है।

(i) निम्नलिखित में से कौन-सा ग्राफ प्रकाश की तीव्रता के साथ प्रकाश-विद्युत धारा I के विचरण को दर्शाता है ?

1

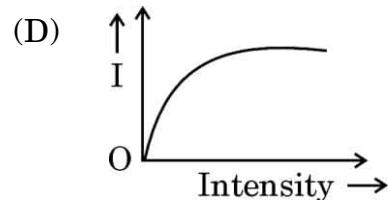
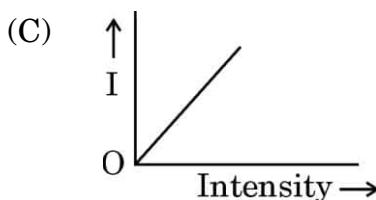
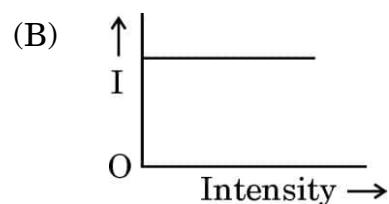
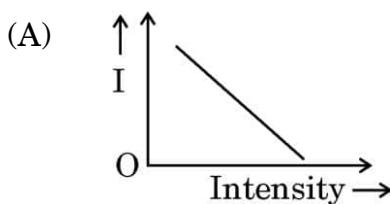
(ii) जब तीव्रता को अपरिवर्तित रखते हुए आपतित प्रकाश की आवृत्ति में वृद्धि की जाती है, तो संतृप्त धारा :

1

- (A) रैखिकतः वृद्धि करती है
- (B) घटती है
- (C) अरैखिकतः वृद्धि करती है
- (D) अपरिवर्तित रहती है

(iii) निम्नलिखित में से किस ग्राफ का उपयोग प्लांक नियतांक का मान प्राप्त करने के लिए किया जा सकता है ?

1





- (A) प्रकाश-विद्युत धारा और आपतित प्रकाश की तीव्रता के बीच
- (B) प्रकाश-विद्युत धारा और आपतित प्रकाश की आवृत्ति के बीच
- (C) अंतक विभव और आपतित प्रकाश की आवृत्ति के बीच
- (D) अंतक विभव और आपतित प्रकाश की तीव्रता के बीच

30. Einstein explained photoelectric effect on the basis of Planck's quantum theory, where light travels in the form of small bundles of energy called photons. The energy of each photon is $h\nu$, where ν is the frequency of incident light and h is Planck's constant. The number of photons in a beam of light determines the intensity of the incident light. A photon incident on a metal surface transfers its total energy $h\nu$ to a free electron in the metal. A part of this energy is used in ejecting the electron from the metal and is called its work function. The rest of the energy is carried by the ejected electron as its kinetic energy.

(i) Which of the following graphs shows the variation of photoelectric current I with the intensity of light ?

1

(ii) When the frequency of the incident light is increased without changing its intensity, the saturation current :

1

(A) increases linearly
(B) decreases
(C) increases non-linearly
(D) remains the same

(iii) Which of the following graphs can be used to obtain the value of Planck's constant ?

1

(A) Photocurrent versus Intensity of incident light
(B) Photocurrent versus Frequency of incident light
(C) Cut-off potential versus Frequency of incident light
(D) Cut-off potential versus Intensity of incident light

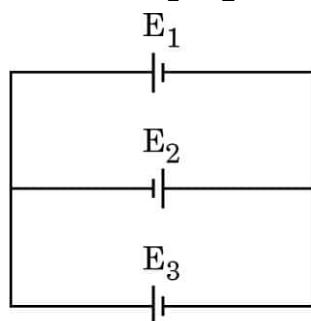
#

(iv) (क) समान तीव्रता के लाल प्रकाश, पीले प्रकाश और नीले प्रकाश को क्रमागत किसी धातु पृष्ठ पर आपतित किया गया है। K_R , K_Y और K_B क्रमशः फोटो-इलेक्ट्रॉनों की अधिकतम गतिज ऊर्जा का निरूपण करते हैं, तब :

1

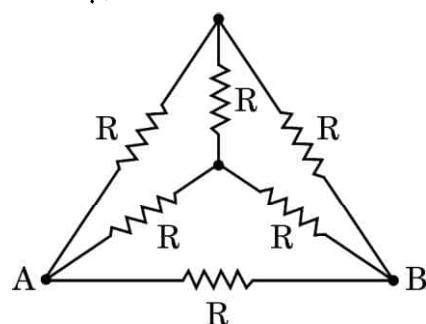
(A) $K_R > K_Y > K_B$ (B) $K_Y > K_B > K_R$
 (C) $K_B > K_Y > K_R$ (D) $K_R > K_B > K_Y$

अथवा


(ख) निम्नलिखित में से कौन-सी धातु दृश्य प्रकाश के साथ प्रकाश-विद्युत प्रभाव को दर्शाती है ?

1

(A) सीज़ियम (B) ज़िंक
 (C) कैडमियम (D) मैग्नीशियम


खण्ड ड

31. (क) (i) तीन बैटरियाँ E_1 , E_2 और E_3 जिनके वि.वा. बल (emf) और आंतरिक प्रतिरोध क्रमशः (4 V, 2 Ω), (2 V, 4 Ω) तथा (6 V, 2 Ω) हैं, आरेख में दर्शाए अनुसार संयोजित हैं। बैटरियों E_1 , E_2 और E_3 से प्रवाहित धाराओं के मान ज्ञात कीजिए।

(ii) आरेख में दर्शाए अनुसार छह तारों के सिरों को, जिनमें प्रत्येक का प्रतिरोध R ($= 10 \Omega$) है, संयोजित किया गया है। इस व्यवस्था के बिंदु A और B किसी परिपथ में संयोजित हैं। इनके द्वारा परिपथ को प्रदान किए गए प्रभावी प्रतिरोध का मान ज्ञात कीजिए।

5

अथवा

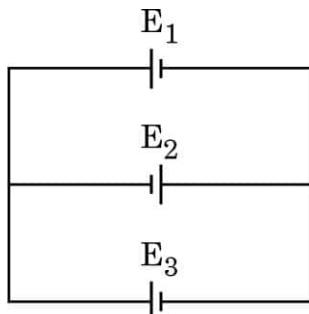
#

(iv) (a) Red light, yellow light and blue light of the same intensity are incident on a metal surface successively. K_R , K_Y and K_B represent the maximum kinetic energy of photoelectrons respectively, then :

1

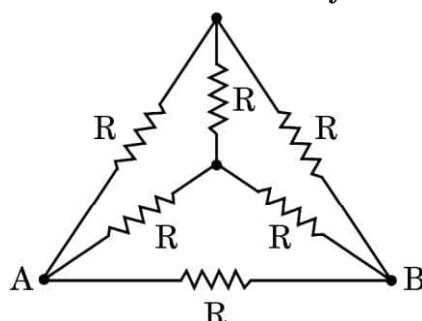
(A) $K_R > K_Y > K_B$ (B) $K_Y > K_B > K_R$
(C) $K_B > K_Y > K_R$ (D) $K_R > K_B > K_Y$

OR


(b) Which of the following metals exhibits photoelectric effect with visible light ?

1

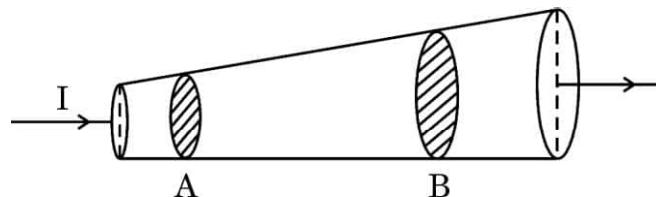
(A) Caesium (B) Zinc
(C) Cadmium (D) Magnesium


SECTION E

31. (a) (i) Three batteries E_1 , E_2 and E_3 of emfs and internal resistances (4 V, 2 Ω), (2 V, 4 Ω) and (6 V, 2 Ω) respectively are connected as shown in the figure. Find the values of the currents passing through batteries E_1 , E_2 and E_3 .

(ii) The ends of six wires, each of resistance R ($= 10 \Omega$) are joined as shown in the figure. The points A and B of the arrangement are connected in a circuit. Find the value of the effective resistance offered by it to the circuit.

5



OR

#

(ख) (i) आरेख में दर्शाए अनुसार धारा I ($= 1 \text{ A}$) परिवर्ती अनुप्रस्थ-काट की कॉपर की किसी छड़ ($n = 8.5 \times 10^{28} \text{ m}^{-3}$) से प्रवाहित हो रही है। इस छड़ की लम्बाई के अनुदिश बिंदुओं A और B पर अनुप्रस्थ-काट क्षेत्रफल क्रमशः $1.0 \times 10^{-7} \text{ m}^2$ और $2.0 \times 10^{-7} \text{ m}^2$ हैं। परिकलित कीजिए :

(I) बिंदुओं A और B पर विद्युत-क्षेत्रों का अनुपात ।
 (II) बिंदु B पर मुक्त इलेक्ट्रॉनों का अपवाह वेग ।

(ii) दो बिंदु आवेश q_1 ($= 16 \mu\text{C}$) तथा q_2 ($= 1 \mu\text{C}$) बिंदुओं $\vec{r}_1 = (3 \text{ m}) \hat{i}$ तथा $\vec{r}_2 = (4 \text{ m}) \hat{j}$ पर स्थित हैं। बिंदु $\vec{r} = (3 \text{ m}) \hat{i} + (4 \text{ m}) \hat{j}$ पर नेट विद्युत-क्षेत्र \vec{E} ज्ञात कीजिए ।

5

32. (क) (i) किसी कुण्डली के स्व-प्रेरकत्व की परिभाषा लिखिए। स्व-प्रेरकत्व L की किसी कुण्डली में धारा I स्थापित करने के लिए आवश्यक ऊर्जा के लिए व्यंजक व्युत्पन्न कीजिए।

(ii) 10 mH और 20 mH स्व-प्रेरकत्व के दो प्रेरकों से प्रवाहित धाराओं में समय के साथ समान दर से वृद्धि हो रही है।

नीचे दिए गए विचरणों को दर्शाने के लिए ग्राफ खींचिए :

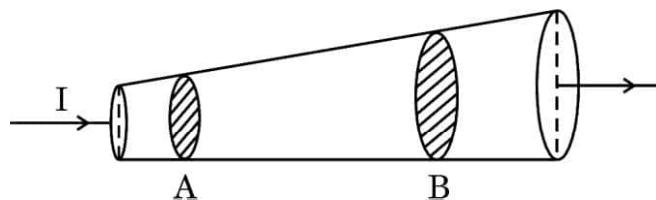
(I) प्रत्येक प्रेरक में प्रेरित वि.वा. बल (emf) के परिमाण और धारा में परिवर्तन की दर के बीच ।

(II) प्रत्येक प्रेरक में संचित ऊर्जा और उससे प्रवाहित धारा के बीच ।

अथवा

5

(ख) (i) अन्योन्य प्रेरकत्व पद की परिभाषा लिखिए। समान लम्बाई परन्तु विभिन्न त्रिज्याओं और विभिन्न फेरों की संख्या वाली दो लम्बी समाक्ष परिनालिकाओं के अन्योन्य प्रेरकत्व के लिए व्यंजक व्युत्पन्न कीजिए।


(ii) किसी प्रेरक से प्रवाहित धारा में एक समान रूप से 40 s में शून्य से 2 A की वृद्धि की गई है। इस अवधि में 5 mV का वि.वा. बल (emf) प्रेरित होता है। $t = 10 \text{ s}$ पर प्रेरक से संबद्ध फ्लक्स ज्ञात कीजिए।

5

#

(b) (i) Current I ($= 1 \text{ A}$) is passing through a copper rod ($n = 8.5 \times 10^{28} \text{ m}^{-3}$) of varying cross-sections as shown in the figure. The areas of cross-section at points A and B along its length are $1.0 \times 10^{-7} \text{ m}^2$ and $2.0 \times 10^{-7} \text{ m}^2$ respectively. Calculate :

(I) the ratio of electric fields at points A and B.
(II) the drift velocity of free electrons at point B.

(ii) Two point charges q_1 ($= 16 \mu\text{C}$) and q_2 ($= 1 \mu\text{C}$) are placed at points $\vec{r}_1 = (3 \text{ m})\hat{i}$ and $\vec{r}_2 = (4 \text{ m})\hat{j}$. Find the net electric field \vec{E} at point $\vec{r} = (3 \text{ m})\hat{i} + (4 \text{ m})\hat{j}$. 5

32. (a) (i) Define self-inductance of a coil. Derive the expression for the energy required to build up a current I in a coil of self-inductance L .

(ii) The currents passing through two inductors of self-inductances 10 mH and 20 mH increase with time at the same rate.

Draw graphs showing the variation of :

(I) the magnitude of emf induced with the rate of change of current in each inductor.
(II) the energy stored in each inductor with the current flowing through it. 5

OR

(b) (i) Define the term mutual inductance. Deduce the expression for the mutual inductance of two long coaxial solenoids of the same length having different radii and different number of turns.

(ii) The current through an inductor is uniformly increased from zero to 2 A in 40 s . An emf of 5 mV is induced during this period. Find the flux linked with the inductor at $t = 10 \text{ s}$. 5

#

33. (क) (i) किसी परावर्ती दूरदर्शक (कैसेग्रेन) का किरण आरेख खींचिए और प्रतिबिम्ब बनने की व्याख्या कीजिए। अपवर्ती दूरदर्शक की तुलना में परावर्ती दूरदर्शक के दो प्रमुख लाभों का उल्लेख कीजिए।

(ii) किसी अपवर्ती दूरदर्शक के अभिदृश्यक की फोकस दूरी नेत्रिका की फोकस दूरी की 50 गुनी है। अनन्त पर अंतिम प्रतिबिम्ब बनते समय नलिका की लम्बाई 102 cm है। दोनों लेंसों की फोकस दूरियाँ ज्ञात कीजिए।

5

अथवा

(ख) (i) सरल सूक्ष्मदर्शी की तुलना में संयुक्त सूक्ष्मदर्शी के किन्हीं दो लाभों का उल्लेख कीजिए। संयुक्त सूक्ष्मदर्शी द्वारा निकट बिंदु पर प्रतिबिम्ब बनना दर्शाने के लिए किरण आरेख खींचिए और इसकी व्याख्या कीजिए।

(ii) कोई पतला समतलावतल लेंस जिसके वक्र पृष्ठ की वक्रता त्रिज्या R है अपवर्तनांक n_1 के काँच का बना है। यह समाक्ष इतनी ही वक्रता त्रिज्या के n_2 अपवर्तनांक के किसी पतले समोत्तल लेंस के सम्पर्क में रखा है। लेंसों के इस संयोजन की क्षमता प्राप्त कीजिए।

5

#

33. (a) (i) Draw a ray diagram of a reflecting telescope (Cassegrain) and explain the formation of image. State two important advantages that a reflecting telescope has over a refracting telescope.

(ii) In a refracting telescope, the focal length of the objective is 50 times the focal length of the eyepiece. When the final image is formed at infinity, the length of the tube is 102 cm. Find the focal lengths of the two lenses.

5

OR

(b) (i) Write any two advantages of a compound microscope over a simple microscope. Draw a ray diagram for the image formation at the near point by a compound microscope and explain it.

(ii) A thin planoconcave lens with its curved face of radius of curvature R is made of glass of refractive index n_1 . It is placed coaxially in contact with a thin equiconvex lens of same radius of curvature of refractive index n_2 . Obtain the power of the combination lens.

5

General Instructions: -

1	You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully.
2	"Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in News Paper/Website etc may invite action under various rules of the Board and IPC."
3	Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them. In class-X, while evaluating two competency-based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, due marks should be awarded.
4	The Marking scheme carries only suggested value points for the answers These are in the nature of Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly.
5	The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after deliberation and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
6	Evaluators will mark(✓) wherever answer is correct. For wrong answer CROSS 'X' be marked. Evaluators will not put right (✓) while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.
7	If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled. This may be followed strictly.
8	If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.
9	If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out with a note " Extra Question ".
10	No marks to be deducted for the cumulative effect of an error. It should be penalized only once.
11	A full scale of marks <u>70</u> (example 0 to 80/70/60/50/40/30 marks as given in Question Paper) has to be used. Please do not hesitate to award full marks if the answer deserves it.
12	Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books

	per day in other subjects (Details are given in Spot Guidelines). This is in view of the reduced syllabus and number of questions in question paper.
13	<p>Ensure that you do not make the following common types of errors committed by the Examiner in the past:-</p> <ul style="list-style-type: none"> • Leaving answer or part thereof unassessed in an answer book. • Giving more marks for an answer than assigned to it. • Wrong totaling of marks awarded on an answer. • Wrong transfer of marks from the inside pages of the answer book to the title page. • Wrong question wise totaling on the title page. • Wrong totaling of marks of the two columns on the title page. • Wrong grand total. • Marks in words and figures not tallying/not same. • Wrong transfer of marks from the answer book to online award list. • Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.) • Half or a part of answer marked correct and the rest as wrong, but no marks awarded.
14	While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0)Marks.
15	Any un assessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.
16	The Examiners should acquaint themselves with the guidelines given in the " Guidelines for spot Evaluation " before starting the actual evaluation.
17	Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.
18	The candidates are entitled to obtain photocopy of the Answer Book on request on payment of the prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.

MARKING SCHEME: PHYSICS(042)

Code: 55/5/1

Q.No.	VALUE POINTS/EXPECTED ANSWERS	Marks	Total Marks
SECTION A			
1	(B) becomes greater than C	1	1
2	(A) $\frac{\alpha}{r}$	1	1
3	(D) $\frac{4R}{3}$	1	1
4	(B) 5 cm	1	1
5	(C) 0.196 Am^2	1	1
6	(D) 69 V	1	1
7	(A) Infrared rays	1	1
8	(B) $[M^0 L^2 T^{-2}]$	1	1
9	(A) X rays	1	1
10	(A) f_0 and f_e small, and $f_e > f_0$	1	1
11	(B) 0 and $4a^2$	1	1
12	(C) $\frac{1}{4}$	1	1
13	(B) Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of the Assertion (A)	1	1
14	(C) Assertion (A) is true, but Reason (R) is false	1	1
15	(D) Both Assertion (A) and reason (R) are false	1	1
16	(A) Both assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the assertion (A).	1	1
SECTION - B			
17	<div style="border: 1px solid black; padding: 5px; display: inline-block;"> Finding the cut-off potential </div> <div style="display: inline-block; vertical-align: middle; text-align: right; margin-top: -20px;"> 2 </div>		
	$eV_0 = h(v - v_0)$ $V_0 = \frac{6.63 \times 10^{-34} \times (6.8 - 3.6) \times 10^{14}}{1.6 \times 10^{-19}}$ $= 1.33 \text{ V}$	$\frac{1}{2}$ 1 $\frac{1}{2}$	2 1 2
18	<div style="border: 1px solid black; padding: 5px; display: inline-block;"> (a) Finding nature and position of the image </div> <div style="display: inline-block; vertical-align: middle; text-align: right; margin-top: -20px;"> 1 + 1 </div> For refraction at convex surface $\frac{n_1}{-u} + \frac{n_2}{v} = \frac{n_2 - n_1}{R}$		
		$\frac{1}{2}$	

$$\frac{n}{v} = \frac{[n-1-3]}{R}$$

$$v = \frac{nR}{n-4}$$

For all values of $n < 4$, the value of v is negative and greater than R
Therefore the nature of image is virtual and is formed in front of convex surface.

OR

(b)

Calculating intensity for the path difference $\lambda/3$

2

$$\phi = \frac{2\pi}{\lambda} \times \Delta x$$

$$= \frac{2\pi}{\lambda} \times \frac{\lambda}{3}$$

$$= \frac{2\pi}{3}$$

$$I' = 4I \cos^2 \frac{\phi}{2} \quad \text{Given } 4I = I_0$$

$$= I_0 \cos^2 \frac{2\pi}{6}$$

$$= \frac{I_0}{4}$$

Note: If a student attempt by using $I = I_1 + I_2 + 2 \sqrt{I_1 I_2} \cos \phi$, award full credit for correct answer.

2

19

Conversion of voltmeter to read upto 250V

2

$$I = \frac{V}{R}$$

$$= \frac{25}{1000}$$

$$= 25 \times 10^{-3} \text{ A}$$

Resistance to be connected to voltmeter

$$R' = \frac{V'}{I} - R$$

$$= \frac{250}{25 \times 10^{-3}} - 1000$$

$$= 9000 \Omega$$

This 9000Ω is in series with voltmeter.

1/2

1

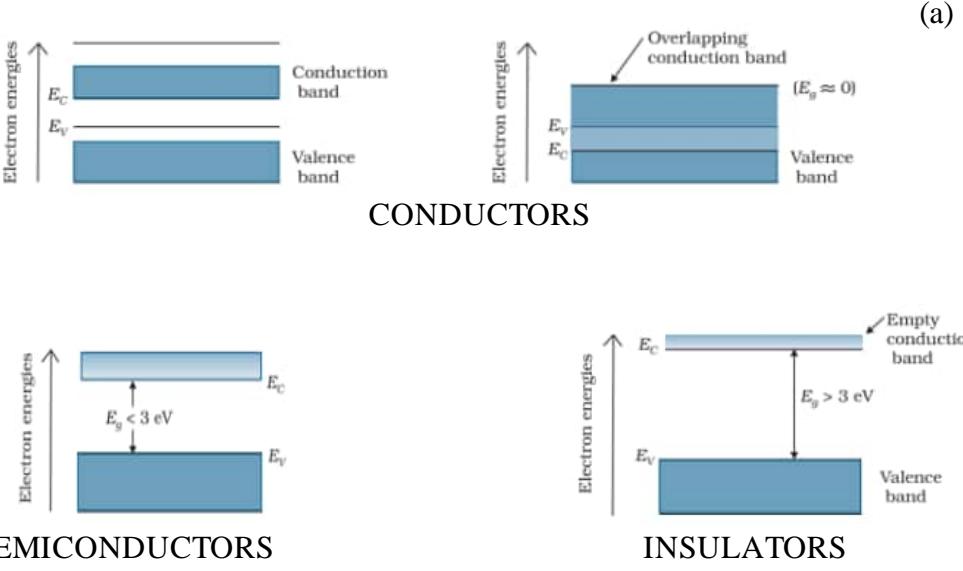
1/2

1/2

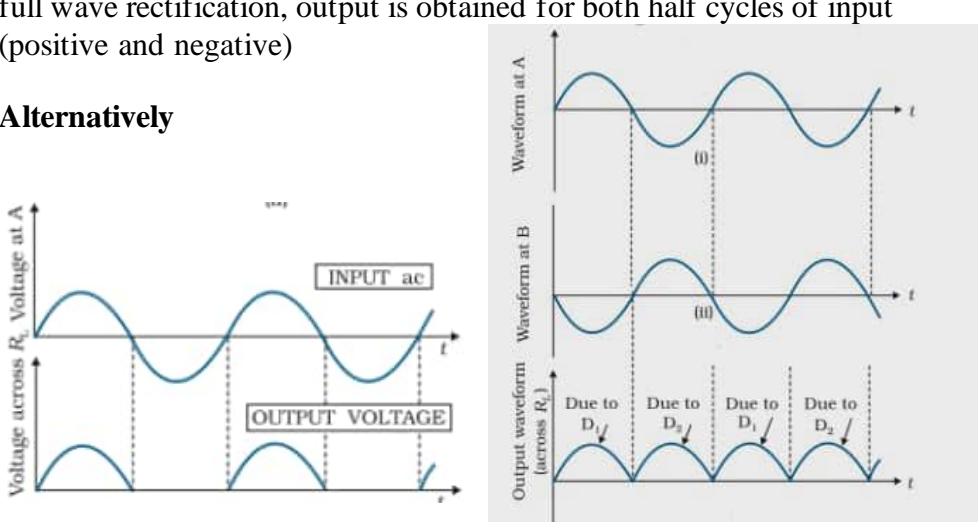
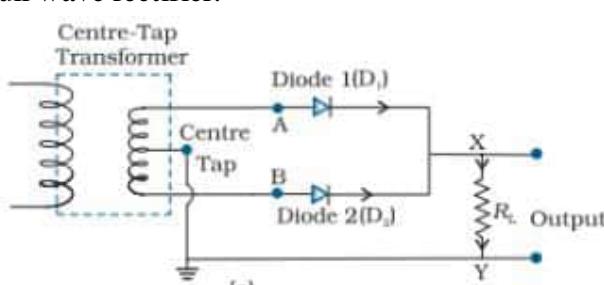
1/2

1/2

2

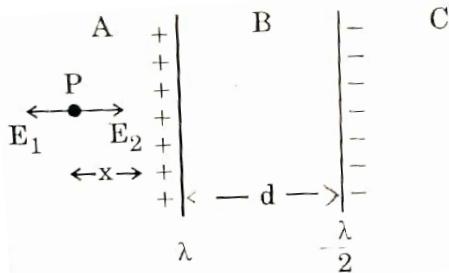

1/2

1/2



1/2

1/2

2


20	<p>Calculation of mass defect and energy released</p> $^{235}_{92}U + {}^1_0n \rightarrow {}^{192}_{54}Xe + {}^{94}_{38}Sr + 2({}^1_0n)$ $\Delta m = m({}^1_0n) + m({}^{235}_{92}U) - (m({}^{140}_{54}Xe) + m({}^{94}_{38}Sr) + 2 \times m({}^1_0n))$ $= 1.00866 + 235.04393 - 139.92164 - 93.91536 - 2 \times 1.00866$ $= 0.19827 u$ <p>Energy released = $\Delta m \times 931 \text{ MeV}$</p> $= 0.19827 \times 931 \text{ MeV}$ $= 184.59 \text{ MeV}$	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ 2
21	<p>Finding (i) temperature coefficient of resistance (ii) resistance of wire at 425 °C</p> $(i) R_2 = R_1(1 + \alpha(t_2 - t_1))$ $10.5 = 10(1 + \alpha \times 100)$ $\alpha = 5 \times 10^{-4} / {}^\circ C$ $(ii) R_{425} = R_{25}(1 + \alpha(425 - 25))$ $= 10(1 + 5 \times 10^{-4} \times 400)$ $= 12 \Omega$	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ 2
SECTION - C		
22	<p>a) Drawing energy band diagrams Formation of electron hole pair b) Explanation</p>	$\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$ $\frac{1}{2}$ 1 <p>CONDUCTORS</p> <p>Conduction band: Energy level E_C Valence band: Energy level E_V</p> <p>SEMICONDUCTORS</p> <p>Conduction band: Energy level E_C Valence band: Energy level E_V Energy gap: $E_g < 3 \text{ eV}$</p> <p>INSULATORS</p> <p>Conduction band: Energy level E_C Valence band: Energy level E_V Energy gap: $E_g > 3 \text{ eV}$</p>

	<p>At room temperature, thermal energy is sufficient for electrons to make them free from the bonds and create a vacancy called hole. Hence electron hole pair is formed.</p> <p>(b) The valence electron in carbon and silicon lie in the second and third orbit respectively. So, the energy required to take out an electron will be less for silicon as compared to carbon. Hence number of free electrons for conduction in silicon are significant but negligibly small for carbon.</p>	$\frac{1}{2}$	1	3
23	<p>Finding the values of capacitance in two cases</p>	$1 \frac{1}{2} + 1 \frac{1}{2}$		
	<p>a) $\frac{1}{C} = \frac{1}{K \left(\frac{\epsilon_0 A}{d/2} \right)} + \frac{1}{\frac{\epsilon_0 A}{d/2}}$</p> $\frac{1}{C} = \frac{d}{2K\epsilon_0 A} + \frac{d}{2\epsilon_0 A}$ $= \left(\frac{1}{K} + 1 \right) \frac{d}{2\epsilon_0 A}$ $C = \left(\frac{2K}{K+1} \right) \frac{\epsilon_0 A}{d}$ <p>b) $C = \frac{\epsilon_0 A K}{2d} + \frac{\epsilon_0 A}{2d}$</p> $= \left(\frac{K+1}{2} \right) \frac{\epsilon_0 A}{d}$	$\frac{1}{2}$	$\frac{1}{2}$	
24	<p>a) Calculating distance between first maxima for two wavelengths</p> <p>b) Calculating least distance from central maxima</p>	$1 \frac{1}{2}$	$1 \frac{1}{2}$	1
	<p>a) Distance = $\frac{n\lambda_1 D}{d} - \frac{n\lambda_2 D}{d}$</p> <p>For $n=1$</p> $\text{Distance} = \frac{(600 - 500) \times 10^{-9} \times 1}{10^{-3}}$ $= 10^{-4} \text{ m}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$
	<p>b) $n\lambda_1 \frac{D}{d} = (n+1)\lambda_2 \frac{D}{d}$</p> $n \times 600 \times 10^{-9} = (n+1) \times 500 \times 10^{-9}$ $n = 5$ $x = 5 \times \frac{\lambda_1 D}{d}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$

	$= \frac{5 \times 600 \times 10^{-9} \times 1}{10^{-3}} = 3 \text{ mm}$ <p>Alternatively</p> $n_1 \lambda_1 = n_2 \lambda_2$ $\frac{n_1}{n_2} = \frac{5}{6}$ <p>therefore $n = 5$</p> <p>Position of 5th bright for λ_1 (600 nm) $x = 5 \times \frac{\lambda_1 D}{d} = 3 \text{ mm}$</p>	1/2	1/2	1/2	1/2	3
25	<p>Difference between half wave and full wave rectification</p> <p>Working of full wave rectifier</p>	1	2			
	<p>In half wave rectification there is output in one half of input cycle, whereas in full wave rectification, output is obtained for both half cycles of input (positive and negative)</p> <p>Alternatively</p> <p>Half wave Rectification</p> <p>Full wave Rectification</p> <p>Working of full wave rectifier:</p> <p>Suppose the input voltage to A with respect to the centre-tap at any instant is positive. At that instant, voltage at B being out of phase will be negative. So, diode D₁ gets forward biased and conducts (while D₂ being reverse biased is not conducting). Hence, during this positive half cycle we get an output current (and output voltage across the load resistor R_L). In the course of ac cycle when the voltage at A becomes negative with respect to</p>	1			1	

	centre tap, the voltage at B would be positive. In this part of the cycle diode D ₁ would not conduct but diode D ₂ would, giving an output current and output voltage (across R _L) during the negative half cycle of the input ac.	1	3
26	<p>a) Obtaining expression for magnetic dipole moment 1½</p> <p>b) To Show $\vec{\mu} = -\left(\frac{e}{2m}\right)\vec{L}$ 1½</p>		
	<p>a) $\mu = IA$ ½</p> $= \frac{e}{T} \times A$ $= \frac{e}{2\pi r} \times \pi r^2$ $= \frac{1}{2} evr$ <p>b) $L = mvr$ ½</p> $\mu = \frac{evr \times m}{2 \times m}$ $= \left(\frac{e}{2m}\right)L$ <p>Direction of $\vec{\mu}$ is opposite to that of \vec{L} ½</p> $\vec{\mu} = -\left(\frac{e}{2m}\right)\vec{L}$		3
27	<p>Finding value of angle i 3</p> <p>For glass- liquid interface</p> $\sin i_c = \frac{1}{n_{21}}$ $= \frac{1.25}{1.5}$ $= \frac{5}{6}$ $i_c + r = 90^\circ$ $\sin r = \sqrt{1 - \cos^2 r} = \frac{\sqrt{11}}{6}$ <p>Since</p> $\frac{\sin i}{\sin r} = n$		

	Therefore, $\sin i = \frac{\sqrt{11}}{4}$ or $i = \sin^{-1} \frac{\sqrt{11}}{4}$	1/2	3
28	<p>(a) Finding charge densities on A and B</p> <p>For ball A</p> $q_1 = 2\sigma \times 4\pi R^2$ $= 8\pi R^2 \sigma$ <p>For ball B</p> $q_2 = 3\sigma \times 4\pi (2R)^2$ $= 48\pi R^2 \sigma$ <p>Total charge (Q) = $q_1 + q_2$</p> $= 56\pi R^2 \sigma$ <p>When balls A and B are connected by a wire, their potentials will be equal Let q be the charge on ball A and (Q - q) be the charge on the ball B after connecting wire.</p> $\frac{Kq}{R} = \frac{K(Q-q)}{2R}$ $2q = Q-q$ $q = \frac{Q}{3}$ $= \frac{56\pi R^2 \sigma}{3}$ $Q - \frac{Q}{3} = \frac{112\pi R^2 \sigma}{3}$ $\sigma_A = \frac{\frac{56\pi R^2 \sigma}{3}}{4\pi R^2}$ $= \frac{14}{3} \sigma$ $\sigma_B = \frac{\frac{112\pi R^2 \sigma}{3}}{4\pi (2R)^2}$ $= \frac{7}{3} \sigma$ <p>OR</p> <p>(b) Location of point at which net electric field is zero</p> <p>Identification of Region</p>	1/2	1/2

Electric field due to wire 1 and wire 2 at point P

$$E_1 = \frac{\lambda}{2 \pi \epsilon_0 x}$$

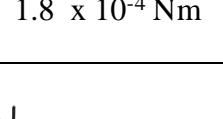
$$E_2 = \frac{\lambda/2}{2\pi\varepsilon_0(x+d)}$$

At P, Net electric field is zero

$$E_1 = E_2$$

$$\frac{\lambda}{2\pi\varepsilon_0 x} = \frac{\lambda}{2 \times 2\pi\varepsilon_0 (x+d)}$$

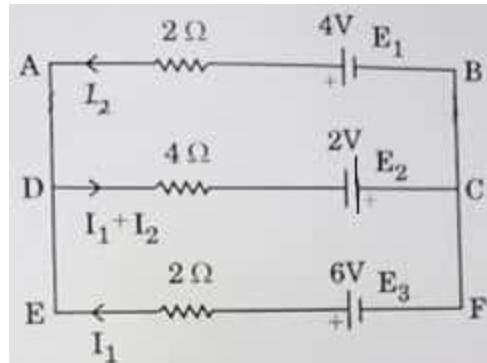
$$x = -2d$$


Negative sign indicates that point lies in the region C.

At a distance $2d$ from wire 1 electric field is zero.

(Note : Award full credit if a student finds the position by taking point in region C directly)

SECTION D


<p>29</p> <p>(i) (B) $\frac{NBA}{K}$</p> <p>(ii) (A) 0.25Ω</p> <p>(iii) (B) 0.24Ω</p> <p>(iv) (a) (A) $(R_2 - 2R_1)$</p> <p style="text-align: center;">OR</p> <p>(b) (B) $1.8 \times 10^{-4} \text{ Nm}$</p>	<p>1</p> <p>1</p> <p>1</p> <p>1</p> <p>4</p>
<p>30</p> <p>(i) (C)</p> <p>(ii) (D) Remains the same</p> <p>(iii) (C) cut-off potential versus frequency of incident light</p> <p>(iv) (a) (C) $K_B > K_Y > K_R$</p>	<p>1</p> <p>1</p> <p>1</p> <p>1</p>

SECTION E

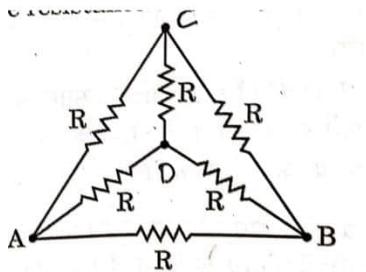
31

(a) (i) Finding current through batteries E_1 , E_2 and E_3 3
(ii) Finding effective resistance 2

i)

In closed loop ABCD, using Kirchhoff's loop law

Similarly In closed loop CDFE


Solving eqn. (1) and (2)

$$I_2 = \frac{1}{5} A$$

$$I_1 = \frac{6}{5}A$$

$$I_1 + I_2 = \frac{7}{5} A$$

ii)

Resistances R_{AC} , R_{CB} , R_{AD} , and R_{DB} form a balanced Wheatstone bridge. Hence current through R_{CD} is zero and will not contribute to equivalent resistance.

The equivalent resistance of bridge is R , is in parallel with R_{AB}
 Series combinations of R_{AC} & R_{CB} and R_{AD} & R_{DB} is in parallel with R_{AB}

$$\frac{1}{R_{eq}} = \frac{1}{R} + \frac{1}{R}$$

$$R_{eq} = \frac{R}{2}$$

Given $R = 10\Omega$, Therefore $R_{eq} = 5\Omega$

OR

(b)

(i) Calculating

(I) ratio of electric fields at points A & B 1 1/2

(II) drift velocity of free electrons at point B 1 1/2

(ii) Finding net electric field at point \vec{r} 2

$$(i) (I) \vec{j} = \sigma \vec{E}$$

$$\frac{j_A}{j_B} = \frac{E_A}{E_B}$$

$$= \frac{I/A_A}{I/A_B}$$

$$= \frac{A_B}{A_A}$$

$$= \frac{2}{1}$$

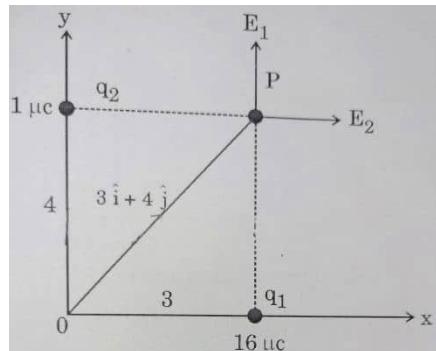
$$(II) v_d = \frac{I}{neA}$$

$$= \frac{1}{8.5 \times 10^{28} \times 1.6 \times 10^{-19} \times 2 \times 10^{-7}}$$

$$= 3.6 \times 10^{-4} \text{ m/s}$$

(ii)

$$\vec{E} = \frac{Kq}{r^2} \hat{r}$$


$$\vec{E}_1 = \frac{9 \times 10^9 \times 16 \times 10^{-6}}{(4)^2} \hat{j}$$

$$= 9 \times 10^3 \hat{j}$$

$$\vec{E}_2 = \frac{9 \times 10^9 \times 1 \times 10^{-6}}{(3)^2} \hat{i}$$

$$= 10^3 \hat{i}$$

$$\vec{E}_{net} = (\hat{i} + 9\hat{j}) 10^3 \text{ N/C}$$

NOTE: Award full credit of this part if a student finds magnitude and direction separately.

1/2

1/2

1/2

5

32

(a)	i) Defining self – inductance Deriving expression for energy	1 1
	ii) Drawing graphs showing the variation of (I) Magnitude of emf induced with rate of change of current (II) Energy stored with current	1½ 1½

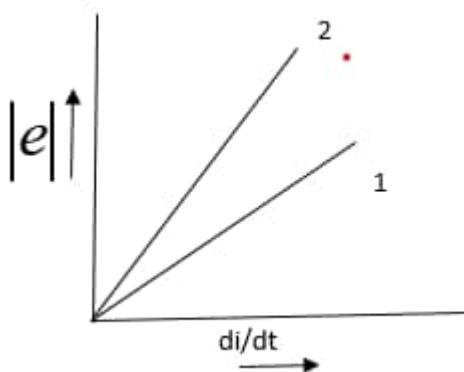
Self Inductance is magnetic flux linked with a coil when the current through the coil is unity.

Alternatively

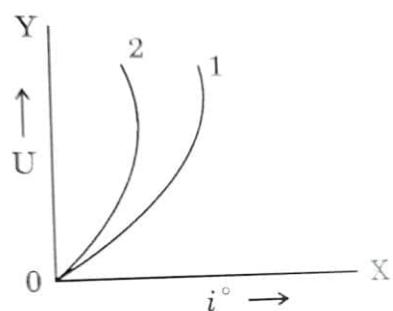
Self Inductance is the induced emf induced in the coil when rate of change of current through the coil is unity.

To maintain growth of current, power has to be supplied from external source.

$$P = |e| |I|$$


$$= \frac{dW}{dt} = LI \frac{dI}{dt}$$

$$dW = LI dI$$

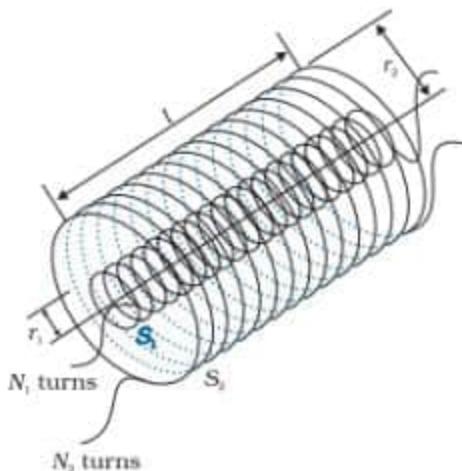

$$W = \int LI dI$$

$$= \frac{1}{2} LI^2$$

$$(I) E = -L \frac{dI}{dt}$$

$$(II) U = \frac{1}{2} LI^2 \text{ Parabolic graph obtained.}$$

(1 indicates 10mH) & (2 indicates 20mH)


OR

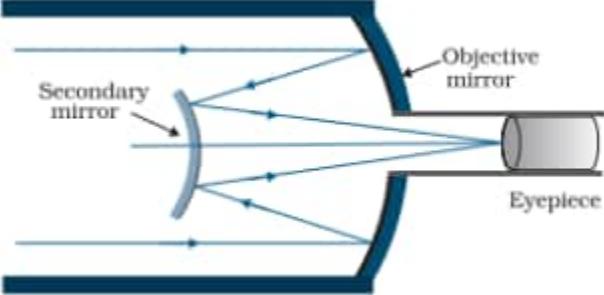
(a)	(i) Defining mutual inductance	1
	Deducing expression for mutual inductance	2
	(ii) Finding flux linked with the inductor	2

(i) Mutual inductance is defined as the induced emf in primary coil when the current in secondary coil changes at the unit rate.

Alternatively

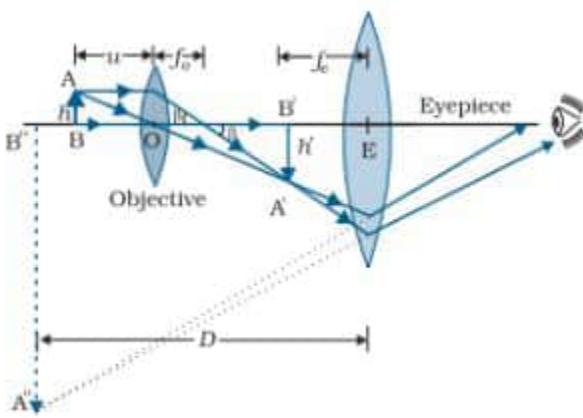
Mutual inductance is defined as the magnetic flux linked with the primary coil when the current in secondary coil is unity.

Consider two long co-axial solenoids each of length l. Radius of inner solenoid S_1 is r_1 and number of turns per unit length is n_1 .


The corresponding quantities for outer solenoid S_2 are r_2 and n_2 respectively. Let N_1 and N_2 be the total number of turns of coils S_1 and S_2 respectively.

When a current I_2 is set up through S_2 , it sets up magnetic flux through S_1 .

$$\begin{aligned}
 N_1 \phi_1 &= M_{12} I_2 \\
 &= (n_1 l) \times (\pi r_1^2) \times (\mu_0 n_2 I_2) \\
 &= \mu_0 n_1 n_2 \pi r_1^2 l I_2 \\
 M_{12} &= \mu_0 n_1 n_2 \pi r_1^2 l = M_{21}
 \end{aligned}$$


(ii)

$$\begin{aligned}
 |e| &= L \frac{dI}{dt} \\
 L &= \frac{e}{dI/dt} \\
 &= \frac{5 \times 10^{-3}}{2/40} \\
 &= 0.1 \text{ H}
 \end{aligned}$$

	$\begin{aligned}\phi &= LI \\ &= 0.1 \times \frac{2}{40} \times 10 \\ &= 0.05 \text{ Wb}\end{aligned}$	$\frac{1}{2}$	$\frac{1}{2}$	5								
33	<table border="1" style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 80%; padding: 5px;">(a) Drawing ray diagram of reflecting telescope</td><td style="width: 20%; text-align: right; padding: 5px;">1</td></tr> <tr> <td>Explanation of formation of image</td><td style="text-align: right; padding: 5px;">1</td></tr> <tr> <td>Advantages</td><td style="text-align: right; padding: 5px;">$\frac{1}{2} + \frac{1}{2}$</td></tr> <tr> <td>(b) Finding focal lengths of the two lenses</td><td style="text-align: right; padding: 5px;">2</td></tr> </table>	(a) Drawing ray diagram of reflecting telescope	1	Explanation of formation of image	1	Advantages	$\frac{1}{2} + \frac{1}{2}$	(b) Finding focal lengths of the two lenses	2			
(a) Drawing ray diagram of reflecting telescope	1											
Explanation of formation of image	1											
Advantages	$\frac{1}{2} + \frac{1}{2}$											
(b) Finding focal lengths of the two lenses	2											
	(i)											
	<p>The parallel rays from a distant object are reflected by a large concave mirror. These rays are then reflected by a convex mirror placed just before the focus of concave mirror and are converged to a point outside the hole. The final image is viewed through eye piece.</p> <p>Advantages (any two)</p> <ol style="list-style-type: none"> 1) No chromatic aberration. 2) Less spherical aberration 3) Less mechanical support required 4) Brighter Image 5) High resolving power. 6) High magnifying power 											
	(ii) For image at infinity											
	$ f_0 + f_e = L$			$\frac{1}{2}$								
	According to question											
	$f_0 = 50 \times f_e$			$\frac{1}{2}$								
	$f_e + 50f_e = 102$			$\frac{1}{2}$								
	$f_e = 2 \text{ cm}$			$\frac{1}{2}$								
	$f_0 = 100 \text{ cm}$			$\frac{1}{2}$								
	OR											
	<table border="1" style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 80%; padding: 5px;">(i) Two advantages of a compound microscope over simple microscope</td><td style="width: 20%; text-align: right; padding: 5px;">$\frac{1}{2} + \frac{1}{2}$</td></tr> <tr> <td>Drawing ray diagram and Explanation</td><td style="text-align: right; padding: 5px;">1 + 1</td></tr> <tr> <td>(ii) Obtaining power of combined lens</td><td style="text-align: right; padding: 5px;">2</td></tr> </table>	(i) Two advantages of a compound microscope over simple microscope	$\frac{1}{2} + \frac{1}{2}$	Drawing ray diagram and Explanation	1 + 1	(ii) Obtaining power of combined lens	2					
(i) Two advantages of a compound microscope over simple microscope	$\frac{1}{2} + \frac{1}{2}$											
Drawing ray diagram and Explanation	1 + 1											
(ii) Obtaining power of combined lens	2											

(i) Advantages (any two)
 1) Larger magnification
 2) Brighter image
 Any other valid advantage

$\frac{1}{2} + \frac{1}{2}$

(deduct $\frac{1}{2}$ mark for not showing arrow for ray diagram)

The lens nearest the object, called the objective, forms a real, inverted, magnified image of the object. This serves as the object for the second lens, the eye piece, functions like a simple microscope and produces final image which is enlarged and virtual.

(ii) Power of plano concave lens $= P_1 = \frac{-(n_1-1)}{R}$

Power of convex lens $= P_2 = (n_2-1) \left(\frac{2}{R} \right)$

$P = P_1 + P_2$

$$= \frac{(2n_2 - n_1 - 1)}{R}$$

$\frac{1}{2}$

$\frac{1}{2}$

$\frac{1}{2}$

$\frac{1}{2}$

$\frac{1}{2}$

5